[Co(NH₃)₅Br]²⁺
Ligands and charges on them,
5 × NH₃ = 5 × 0 = 0
1 × Br⁻¹ = 1 × -1 = -1
Charge on sphere = +2
So, putting values in equation,
Co + (0)₅ - 1 = +2
Co + 0 - 1 = +2
Co - 1 = +2
Co = +2 + 1
Co = +3
Result:
Oxidation state of Co in [Co(NH₃)₅Br]²⁺ is +3.
Answer:
5.96 g/cm^3
Explanation:
Corner atom = 1/8
Atoms in center = 1
Atoms in face of the cube= 1/2
Molar mass of V = 50.94 g/mol <em>(from period table)</em>
1 mole = 6.02x10^23
<em>In BCC unit cell:</em>
(8 x 1/8)+ 1=2 per 1 unit cell
<em>Mass: </em>2(50.94g)/6.02x10^23 = 1.69x10^-22 g/unit cell
305pm=(305x10^-12m÷10^-2m) x (1mL÷1cm^3)
= 2.837 x 10^-23 mL
<em>1pm=10^-12m</em>
<em>1cm=10^-2m</em>
<em>1mL=1cm^3</em>
<em></em>
density=mass/volume
density of V = 1.69x10^-22g÷2.837x10^-23mL
=5.957g/mL
=5.96g/cm^3
Answer: A. Internal energy : May be viewed as the sum of the kinetic and potential energies of the molecules
B. Latent heat: The internal energy associated with the phase of a system.
C. Chemical (bond) energy : The internal energy associated with the atomic bonds in a molecule
D. Nuclear energy : The internal energy associated with the bonds within the nucleus of the atom itself
Explanation:
Internal energy is defined as the total energy of a closed system. Internal energy is the sum of potential energy of the system and the kinetic energy of the system. It is represented by symbol U.
Latent heat is the thermal energy released or absorbed by a thermodynamic system when the temperature of the system does not change. It is thus also called as hidden heat.
Chemical energy is the energy stored in the bonds of molecules.
Nuclear energy is the energy which is stored in the nucleus of an atom called as binding energy within protons and neutrons.
Answer:
I belive the answer is A but the image quality is hard to tell.
Explanation:
As pressure increases the higher the melting point of rock becomes making it harder to melt, thats why molten rocks brought to the surface melt because of the change in pressure.