To solve this problem, we must assume ideal gas behaviour so
that we can use Graham’s law:
vA / vB = sqrt (MW_B / MW_A)
where,
<span>vA = speed of diffusion of A (HBR)</span>
vB = speed of diffusion of B (unknown)
MW_B = molecular weight of B (unkown)
MW_A = molar weight of HBr = 80.91 amu
We know from the given that:
vA / vB = 1 / 1.49
So,
1/1.49 = sqrt (MW_B / 80.91)
MW_B = 36.44 g/mol
Since this unknown is also hydrogen halide, therefore this
must be in the form of HX.
HX = 36.44 g/mol , therefore:
x = 35.44 g/mol
From the Periodic Table, Chlorine (Cl) has a molar mass of
35.44 g/mol. Therefore the hydrogen halide is:
HCl
Answer:
The solution is always homogeneous mixture and transparent through which the light can travel. The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture while the sand can not dissolve in water and sand particles scatter the light.
Explanation:
Solution:
"The solution is always homogeneous mixture and transparent through which the light can travel"
The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture. The solubility of sugar is high as compared to the sand in water because the negative and positive ends of sucrose easily dissolve into the polar solvent i.e, water
Suspension:
"Suspension is the heterogeneous mixture, in which the solute particles settle down but does not dissolve"
The mixture of water and sand is suspension. The sand can not dissolve in water because it is mostly consist of quartz. The nonpolar covalent bonds of sand are too strong and cannot be break by water molecules.
Answer:
pH= 0.92
Explanation:
HNO3-> H^+ +NO3^-
HNO3 is a strong acid, so it fully dissociates
[HNO3] = 0.12M [H^+] = 0.12M
pH= -log[H^+]
pH=-log[.12] = 0.92
pH = 0.92
Hey
Explanation:
The answer is this because
Answer:
Sulfur Dioxide
Explanation:
Sulfur dioxide is the chemical that, when released by factories using fossil fuels, combines with the atmosphere and can produce acid raid.