Answer:
(a) The average cost function is 
(b) The marginal average cost function is 
(c) The average cost approaches to 95 if the production level is very high.
Step-by-step explanation:
(a) Suppose
is a total cost function. Then the average cost function, denoted by
, is

We know that the total cost for making x units of their Senior Executive model is given by the function

The average cost function is

(b) The derivative
of the average cost function, called the marginal average cost function, measures the rate of change of the average cost function with respect to the number of units produced.
The marginal average cost function is

(c) The average cost approaches to 95 if the production level is very high.
![\lim_{x \to \infty} (\bar{C}(x))=\lim_{x \to \infty} (95+\frac{230000}{x})\\\\\lim _{x\to a}\left[f\left(x\right)\pm g\left(x\right)\right]=\lim _{x\to a}f\left(x\right)\pm \lim _{x\to a}g\left(x\right)\\\\=\lim _{x\to \infty \:}\left(95\right)+\lim _{x\to \infty \:}\left(\frac{230000}{x}\right)\\\\\lim _{x\to a}c=c\\\lim _{x\to \infty \:}\left(95\right)=95\\\\\mathrm{Apply\:Infinity\:Property:}\:\lim _{x\to \infty }\left(\frac{c}{x^a}\right)=0\\\lim_{x \to \infty} (\frac{230000}{x} )=0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cbar%7BC%7D%28x%29%29%3D%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%2895%2B%5Cfrac%7B230000%7D%7Bx%7D%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5Bf%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29%5Cright%5D%3D%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%5Cpm%20%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29%5C%5C%5C%5C%3D%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%2B%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Cfrac%7B230000%7D%7Bx%7D%5Cright%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7Dc%3Dc%5C%5C%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%3D95%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3AInfinity%5C%3AProperty%3A%7D%5C%3A%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%7D%5Cleft%28%5Cfrac%7Bc%7D%7Bx%5Ea%7D%5Cright%29%3D0%5C%5C%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cfrac%7B230000%7D%7Bx%7D%20%29%3D0)

This question not incomplete
Complete Question
The life of a semiconductor laser at a constant power is normally distributed with a mean of 7,000 hours and a standard deviation of 600 hours. If three lasers are used in a product and they are assumed to fail independently, the probability that all three are still operating after 7,000 hours is closest to? Assuming percentile = 95%
Answer:
0.125
Step-by-step explanation:
Assuming for 95%
z score for 95th percentile = 1.645
We find the Probability using z table.
P(z = 1.645) = P( x ≤ 7000)
= P(x<Z) = 0.95
After 7000 hours = P > 7000
= 1 - P(x < 7000)
= 1 - 0.95
= 0.05
If three lasers are used in a product and they are assumed to fail independently, the probability that all three are still operating after 7,000 hours is calculated as:
(P > 7000)³
(0.05)³ = 0.125
SOH-CAH-TOA
sin=opp/hyp
cos=adj/hyp
tan=opp/adj
1. Sin c=opp/hyp 2. tan=opp/adj 3. sin=opp/hyp
sin c=8/17 tan38°=x/16 sin38=18/x
x=18/sin38; x=29.236846
Answer:
b.
Step-by-step explanation:
The given function is

Recall that the reciprocal of the cosine ratio is the secant ratio.
This implies that;



We take the inverse cosine of both sides to obtain;

Answer:
First one
Step-by-step explanation:
.20 is 20% of 100 and there is 5 boxes and 5 times 20 = 100