A decrease in mass will decrease an objects weight because
weight = mass x gravitational constant
Answer:
Perpendicular to the surface
Explanation:
- Electric field lines represent the direction of the electric field. The electric field lines also correspond to the direction along which the gradient of the electric potential is maximum.
- Equipotentials are lines or surfaces along which the electric potential is constant: the electric potential does not change moving along an equipotential surface.
Given the two definitions, equipotential lines are always perpendicular to the electric field lines. Therefore, in this problem, the direction of the electric field is perpendicular to the spherical equipotential surface.
Answer:
8.829 m/s²
Explanation:
M = Mass of Earth
m = Mass of Exoplanet
= Acceleration due to gravity on Earth = 9.81 m/s²
g = Acceleration due to gravity on Exoplanet



Dividing the equations we get

Acceleration due to gravity on the surface of the Exoplanet is 8.829 m/s²
Answer:
x(t) = - 6 cos 2t
Explanation:
Force of spring = - kx
k= spring constant
x= distance traveled by compressing
But force = mass × acceleration
==> Force = m × d²x/dt²
===> md²x/dt² = -kx
==> md²x/dt² + kx=0 ------------------------(1)
Now Again, by Hook's law
Force = -kx
==> 960=-k × 400
==> -k =960 /4 =240 N/m
ignoring -ve sign k= 240 N/m
Put given data in eq (1)
We get
60d²x/dt² + 240x=0
==> d²x/dt² + 4x=0
General solution for this differential eq is;
x(t) = A cos 2t + B sin 2t ------------------------(2)
Now initially
position of mass spring
at time = 0 sec
x (0) = 0 m
initial velocity v= = dx/dt= 6m/s
from (2) we have;
dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)
put t =0 and dx/dt = v(0) = -6 we get;
-2A sin 2(0)+2Bcos(0) =-6
==> 2B = -6
B= -3
Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get
x(t) = - 6 cos 2t
==>
The first one is: head
Second one is: 10 trillion km