Answer:
y-determinant = 2
Step-by-step explanation:
Given the following system of equation:
Let's represent it using a matrix:
![\left[\begin{array}{ccc}1&2\\1&-3\end{array}\right] = \left[\begin{array}{ccc}5\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C1%26-3%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
The y‐numerator determinant is formed by taking the constant terms from the system and placing them in the y‐coefficient positions and retaining the x‐coefficients. Then:
![\left[\begin{array}{ccc}1&5\\1&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%265%5C%5C1%267%5Cend%7Barray%7D%5Cright%5D%20)
y-determinant = (1)(7) - (5)(1) = 2.
Therefore, the y-determinant = 2
A: (x + 5i)^2
= (x + 5i)(x + 5i)
= (x)(x) + (x)(5i) + (5i)(x) + (5i)(5i)
= x^2 + 5ix + 5ix + 25i^2
= 25i^2 + 10ix + x^2
B: (x - 5i)^2
= (x + - 5i)(x + - 5i)
= (x)(x) + (x)(- 5i) + (- 5i)(x) + (- 5i)(- 5i)
= x^2 - 5ix - 5ix + 25i^2
= 25i^2 - 10ix + x^2
C: (x - 5i)(x + 5i)
= (x + - 5i)(x + 5i)
= (x)(x) + (x)(5i) + (- 5i)(x) + (- 5i)(5i)
= x^2 + 5ix - 5ix - 25i^2
= 25i^2 + x^2
D: (x + 10i)(x - 15i)
= (x + 10i)(x + - 15i)
= (x)(x) + (x)(- 15i) + (10i)(x) + (10i)(- 15i)
= x^2 - 15ix + 10ix - 150i^2
= - 150i^2 + 5ix + x^2
Hope that helps!!!
Step-by-step explanation:
hope this helps you
..................
Answer:
D
Step-by-step explanation:
correct
Answer:
I would say equal to twelve
Step-by-step explanation:
Hope this helps.