Answer is: K <span>be for the reaction at 375 K is 326.
</span>Chemical reaction: N₂(g) + 3H₂(g) ⇌ 2NH₃(g); ΔH = -92,22 kJ/mol.
T₁<span><span> = 298 K
</span>T</span>₂<span><span> = 375 K
</span><span>Δ<span>H = -92,22 kJ/mol = -92220 J/mol.
R = 8,314 J/K</span></span></span>·mol.<span>
K</span>₁ = 6,8·10⁵.<span>
K</span>₂ = ?The van’t Hoff equation: ln(K₂/K₁) = -ΔH/R(1/T₂ - 1/T₁).
ln(K₂/6,8·10⁵) = 92220 J/mol / 8,314 J/K·mol (1/375K - 1/298K).
ln(K₂/6,8·10⁵) = 11092,13 · (0,00266 - 0,00335).
ln(K₂/6,8·10⁵) = -7,64.
K₂/680000= 0,00048
K₂ = 326,4.
Q: What is the change of entropy for 3.0 kg of water when the 3.0 kg of water is changed to ice at 0 °C? (Lf = 3.34 x 105 J/kg)
Answer:
-3670.33 J/K
Explanation:
Entropy: This can be defined as the degree of randomness or disorderliness of a substance. The S.I unit of Entropy is J/K.
Mathematically, change of Entropy can be expressed as,
ΔS = ΔH/T ....................................... Equation 1
Where ΔS = Change of entropy, ΔH = heat change, T = temperature.
ΔH = -(Lf×m).................................... Equation 2
Note: ΔH is negative because heat is lost.
Where Lf = latent heat of ice = 3.34×10⁵ J/kg, m = 3.0 kg, m = mass of water = 3.0 kg
Substitute into equation
ΔH = -(3.34×10⁵×3.0)
ΔH = - 1002000 J.
But T = 0 °C = (0+273) K = 273 K.
Substitute into equation 1
ΔS = -1002000/273
ΔS = -3670.33 J/K
Note: The negative value of ΔS shows that the entropy of water decreases when it is changed to ice at 0 °C
Answer:
The water cycle, also known as the hydrologic cycle or the hydrological cycle, describes the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly constant over time but the partitioning of the water into the major reservoirs of ice, fresh water, saline water and atmospheric water is variable depending on a wide range of climatic variables. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere, by the physical processes of evaporation, condensation, precipitation, infiltration, surface runoff, and subsurface flow. In doing so, the water goes through different forms: liquid, solid (ice) and vapor. Hope this helps, mark as brainliest please!
Answer:The electron configuration of an atom shows the number of electrons in each sublevel in each energy level of the ground-state atom. To determine the electron configuration of a particular atom, start at the nucleus and add electrons one by one until the number of electrons equals the number of protons in the nucleus. Each added electron is assigned to the lowest-energy sublevel available. The first sublevel filled will be the 1s sublevel, then the 2s sublevel, the 2p sublevel, the 3s, 3p, 4s, 3d, and so on. This order is difficult to remember and often hard to determine from energy-level diagrams such as Figure 5.8
A more convenient way to remember the order is to use Figure 5.9. The principal energy levels are listed in columns, starting at the left with the 1s level. To use this figure, read along the diagonal lines in the direction of the arrow. The order is summarized under the diagram