1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
5

Suppose a > 0 is constant and consider the parameteric surface sigma given by r(phi, theta) = a sin(phi) cos(theta)i + a sin(

phi) j + a cos(phi) k. 0 lessthanorequalto theta lessthanorequalto 2 pi, 0 lessthanorequalto phi lessthanorequalto pi. (a) Directly verify algebraically that r parameterizes the sphere x^2 + y^2 + z^2 = a^2, by substituting x = a sin(phi), y = a sin(phi) sin(theta), and z = a cos(phi) into the left-hand side of the equation. (b) Find r_phi, r_theta, r_phi times r_theta, and |r_phi times r_theta|. (c) Compute the surface area of the sphere doubleintegral_sigma l dS using change of variables. Find the surface area of the band sigma cut from the paraboloid z = x^2 + y^2 by the planes z = 2 and z = 6 by first finding a parameterization for the surface and then computing doubleintegral_sigma dS. Find the flux of the field F = x^2j - xzk across the surface cut by the parabolic cylinder y = x^2, -1 lessthanorequalto x lessthanorequalto 1, by the planes z = 0 and z = 2, Your normal vector should point in the direction indicated in the figure below.
Mathematics
1 answer:
Gnom [1K]3 years ago
8 0

\Sigma should have parameterization

\vec r(\varphi,\theta)=a\sin\varphi\cos\theta\,\vec\imath+a\sin\varphi\sin\theta\,\vec\jmath+a\cos\varphi\,\vec k

if it's supposed to capture the sphere of radius a centered at the origin. (\sin\theta is missing from the second component)

a. You should substitute x=a\sin\varphi\cos\theta (missing \cos\theta this time...). Then

x^2+y^2+z^2=(a\sin\varphi\cos\theta)^2+(a\sin\varphi\sin\theta)^2+(a\cos\varphi)^2

x^2+y^2+z^2=a^2\left(\sin^2\varphi\cos^2\theta+\sin^2\varphi\sin^2\theta+\cos^2\varphi\right)

x^2+y^2+z^2=a^2\left(\sin^2\varphi\left(\cos^2\theta+\sin^2\theta\right)+\cos^2\varphi\right)

x^2+y^2+z^2=a^2\left(\sin^2\varphi+\cos^2\varphi\right)

x^2+y^2+z^2=a^2

as required.

b. We have

\vec r_\varphi=a\cos\varphi\cos\theta\,\vec\imath+a\cos\varphi\sin\theta\,\vec\jmath-a\sin\varphi\,\vec k

\vec r_\theta=-a\sin\varphi\sin\theta\,\vec\imath+a\sin\varphi\cos\theta\,\vec\jmath

\vec r_\varphi\times\vec r_\theta=a^2\sin^2\varphi\cos\theta\,\vec\imath+a^2\sin^2\varphi\sin\theta\,\vec\jmath+a^2\cos\varphi\sin\varphi\,\vec k

\|\vec r_\varphi\times\vec r_\theta\|=a^2\sin\varphi

c. The surface area of \Sigma is

\displaystyle\iint_\Sigma\mathrm dS=a^2\int_0^\pi\int_0^{2\pi}\sin\varphi\,\mathrm d\theta\,\mathrm d\varphi

You don't need a substitution to compute this. The integration limits are constant, so you can separate the variables to get two integrals. You'd end up with

\displaystyle\iint_\Sigma\mathrm dS=4\pi a^2

# # #

Looks like there's an altogether different question being asked now. Parameterize \Sigma by

\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+u^2\,\vec k

with \sqrt2\le u\le\sqrt6 and 0\le v\le2\pi. Then

\|\vec s_u\times\vec s_v\|=u\sqrt{1+4u^2}

The surface area of \Sigma is

\displaystyle\iint_\Sigma\mathrm dS=\int_0^{2\pi}\int_{\sqrt2}^{\sqrt6}u\sqrt{1+4u^2}\,\mathrm du\,\mathrm dv

The integrand doesn't depend on v, so integration with respect to v contributes a factor of 2\pi. Substitute w=1+4u^2 to get \mathrm dw=8u\,\mathrm du. Then

\displaystyle\iint_\Sigma\mathrm dS=\frac\pi4\int_9^{25}\sqrt w\,\mathrm dw=\frac{49\pi}3

# # #

Looks like yet another different question. No figure was included in your post, so I'll assume the normal vector points outward from the surface, away from the origin.

Parameterize \Sigma by

\vec t(u,v)=u\,\vec\imath+u^2\,\vec\jmath+v\,\vec k

with -1\le u\le1 and 0\le v\le 2. Take the normal vector to \Sigma to be

\vec t_u\times\vec t_v=2u\,\vec\imath-\vec\jmath

Then the flux of \vec F across \Sigma is

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=\int_0^2\int_{-1}^1(u^2\,\vec\jmath-uv\,\vec k)\cdot(2u\,\vec\imath-\vec\jmath)\,\mathrm du\,\mathrm dv

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-\int_0^2\int_{-1}^1u^2\,\mathrm du\,\mathrm dv

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-2\int_{-1}^1u^2\,\mathrm du=-\frac43

If instead the direction is toward the origin, the flux would be positive.

You might be interested in
Historically, these bolts have an average thickness of 10.1 mm. A recent random sample of 10 bolts yielded these thicknesses:
Akimi4 [234]

Answer:

a) Sample mean = 9.99

Sample standard deviation = 0.3348

b) -1.0389

c) 0.1631

Step-by-step explanation:

We are given the following in the question:

9.7, 9.9, 10.3, 10.1, 10.5, 9.4, 9.9, 10.1, 9.7, 10.3

a) sample mean and standard deviation

Formula:

\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}  

where x_i are data points, \bar{x} is the mean and n is the number of observations.  

Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}

Mean =\displaystyle\frac{99.9}{10} = 9.99

Sum of squares of differences = 1.009

S.D = \sqrt{\dfrac{1.009}{9}} = 0.3348

b) observed value of the t-statistic

Formula:

t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }

Putting all the values, we have

t_{stat} = \displaystyle\frac{9.99 - 10.1}{\frac{0.3348}{\sqrt{10}} } = -1.0389

c) probability of these statistics (or worse) if the true mean were 10.1 mm

Degree of freedom =  n - 1 = 9

Calculating the value from the table

P(x < 9.99) = 0.1631

0.1631 is the the probability of these statistics (or worse) if the true mean were 10.1 mm

8 0
3 years ago
Please solve 21=5n-2(n-3)
Stella [2.4K]

21 = 5n-2(n-3)

21 = 5n-2n+6

21-6 = 3n

n=15/3

n=5

8 0
3 years ago
Read 2 more answers
3.5.2 Test (CSI) Question 6 of 12 Use the area of the rectangle to find the area of the triangle. 5 ft 10 ft O A. The area of th
Jlenok [28]

Answer:

c

Step-by-step explanation:

3 0
3 years ago
PLEASE HELPPP
Y_Kistochka [10]

Answer:

A

Step-by-step explanation:

4 0
2 years ago
Factorization of 3x2-8x-3
pychu [463]
<span>3x</span>² <span>- 8x -3  = 3x</span>² - 9x + x - 3 =

= 3x² - 9x + x - 3 = 3x* ( x - 3) + 1* (x - 3) = 

= 3x * (x - 3) + 1 * (x - 3) = (3x + 1) (x - 3) 

Answer (3x + 1) (x - 3)

3 0
3 years ago
Read 2 more answers
Other questions:
  • A bowling-ball maker starts with an 8.5-inch-diameter resin sphere and drills 3 cylindrical finger holes in it. Each hole is 1 i
    12·2 answers
  • What is -4/9*(-7/9)?
    11·1 answer
  • Greg has a container of building blocks that has 4 blocks in each row and 8 blocks in each column. How many
    12·2 answers
  • The width and length of the bulletin board are whole numbers what is the width of the bulletin board if the length is 4 feet
    15·1 answer
  • Which function BEST expresses the linear relationship displayed by the scatter plot?y = 0.50x + 1 , y = 0.10x + 3.75 , y = 0.10x
    5·1 answer
  • Is (2,3), (6,9), (10,12), (2,-3) a function
    6·2 answers
  • HELP! will give brainliest.
    5·1 answer
  • <img src="https://tex.z-dn.net/?f=find%20%5C%3A%20the%20%5C%3A%20volume%20%5C%3A%20of%20%5C%3A%20cylinder%20%5C%5C%20%20%5C%5C%2
    12·1 answer
  • Y = 4( x + 2)^2 - 8<br><br><br> Convert the equation from vertex form to standard form.
    10·2 answers
  • There are 9 apples in each<br> Box. How many Apples are in <br> in 6 boxes
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!