1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
5

Suppose a > 0 is constant and consider the parameteric surface sigma given by r(phi, theta) = a sin(phi) cos(theta)i + a sin(

phi) j + a cos(phi) k. 0 lessthanorequalto theta lessthanorequalto 2 pi, 0 lessthanorequalto phi lessthanorequalto pi. (a) Directly verify algebraically that r parameterizes the sphere x^2 + y^2 + z^2 = a^2, by substituting x = a sin(phi), y = a sin(phi) sin(theta), and z = a cos(phi) into the left-hand side of the equation. (b) Find r_phi, r_theta, r_phi times r_theta, and |r_phi times r_theta|. (c) Compute the surface area of the sphere doubleintegral_sigma l dS using change of variables. Find the surface area of the band sigma cut from the paraboloid z = x^2 + y^2 by the planes z = 2 and z = 6 by first finding a parameterization for the surface and then computing doubleintegral_sigma dS. Find the flux of the field F = x^2j - xzk across the surface cut by the parabolic cylinder y = x^2, -1 lessthanorequalto x lessthanorequalto 1, by the planes z = 0 and z = 2, Your normal vector should point in the direction indicated in the figure below.
Mathematics
1 answer:
Gnom [1K]3 years ago
8 0

\Sigma should have parameterization

\vec r(\varphi,\theta)=a\sin\varphi\cos\theta\,\vec\imath+a\sin\varphi\sin\theta\,\vec\jmath+a\cos\varphi\,\vec k

if it's supposed to capture the sphere of radius a centered at the origin. (\sin\theta is missing from the second component)

a. You should substitute x=a\sin\varphi\cos\theta (missing \cos\theta this time...). Then

x^2+y^2+z^2=(a\sin\varphi\cos\theta)^2+(a\sin\varphi\sin\theta)^2+(a\cos\varphi)^2

x^2+y^2+z^2=a^2\left(\sin^2\varphi\cos^2\theta+\sin^2\varphi\sin^2\theta+\cos^2\varphi\right)

x^2+y^2+z^2=a^2\left(\sin^2\varphi\left(\cos^2\theta+\sin^2\theta\right)+\cos^2\varphi\right)

x^2+y^2+z^2=a^2\left(\sin^2\varphi+\cos^2\varphi\right)

x^2+y^2+z^2=a^2

as required.

b. We have

\vec r_\varphi=a\cos\varphi\cos\theta\,\vec\imath+a\cos\varphi\sin\theta\,\vec\jmath-a\sin\varphi\,\vec k

\vec r_\theta=-a\sin\varphi\sin\theta\,\vec\imath+a\sin\varphi\cos\theta\,\vec\jmath

\vec r_\varphi\times\vec r_\theta=a^2\sin^2\varphi\cos\theta\,\vec\imath+a^2\sin^2\varphi\sin\theta\,\vec\jmath+a^2\cos\varphi\sin\varphi\,\vec k

\|\vec r_\varphi\times\vec r_\theta\|=a^2\sin\varphi

c. The surface area of \Sigma is

\displaystyle\iint_\Sigma\mathrm dS=a^2\int_0^\pi\int_0^{2\pi}\sin\varphi\,\mathrm d\theta\,\mathrm d\varphi

You don't need a substitution to compute this. The integration limits are constant, so you can separate the variables to get two integrals. You'd end up with

\displaystyle\iint_\Sigma\mathrm dS=4\pi a^2

# # #

Looks like there's an altogether different question being asked now. Parameterize \Sigma by

\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+u^2\,\vec k

with \sqrt2\le u\le\sqrt6 and 0\le v\le2\pi. Then

\|\vec s_u\times\vec s_v\|=u\sqrt{1+4u^2}

The surface area of \Sigma is

\displaystyle\iint_\Sigma\mathrm dS=\int_0^{2\pi}\int_{\sqrt2}^{\sqrt6}u\sqrt{1+4u^2}\,\mathrm du\,\mathrm dv

The integrand doesn't depend on v, so integration with respect to v contributes a factor of 2\pi. Substitute w=1+4u^2 to get \mathrm dw=8u\,\mathrm du. Then

\displaystyle\iint_\Sigma\mathrm dS=\frac\pi4\int_9^{25}\sqrt w\,\mathrm dw=\frac{49\pi}3

# # #

Looks like yet another different question. No figure was included in your post, so I'll assume the normal vector points outward from the surface, away from the origin.

Parameterize \Sigma by

\vec t(u,v)=u\,\vec\imath+u^2\,\vec\jmath+v\,\vec k

with -1\le u\le1 and 0\le v\le 2. Take the normal vector to \Sigma to be

\vec t_u\times\vec t_v=2u\,\vec\imath-\vec\jmath

Then the flux of \vec F across \Sigma is

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=\int_0^2\int_{-1}^1(u^2\,\vec\jmath-uv\,\vec k)\cdot(2u\,\vec\imath-\vec\jmath)\,\mathrm du\,\mathrm dv

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-\int_0^2\int_{-1}^1u^2\,\mathrm du\,\mathrm dv

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-2\int_{-1}^1u^2\,\mathrm du=-\frac43

If instead the direction is toward the origin, the flux would be positive.

You might be interested in
What is the lcd for five twelfths?
sergij07 [2.7K]
You have to have more than one LCD or it won't work for one you have to have 2 or more fraction to complete this
7 0
3 years ago
HELP ME PLEASE<br> RIGHT ANSWERS ONLYYY PLEASE
forsale [732]

The correct answer is

F. x = 8

8 0
3 years ago
PLS HELP ME ASAP. I don’t have time to do this. It also detects if it’s right or wrong.
nadezda [96]

Answer:

153.86

Step-by-step explanation:

3.14*7^2=153.86

6 0
3 years ago
Shane rode his bike for 2 hours and traveled 12 miles. At this rate how long would it take him to travel 22 miles?
ella [17]
It would take him about 3.67 hrs.
3 0
3 years ago
Read 2 more answers
Can someone please help me on this question <br> I will give brainliest
xz_007 [3.2K]

Answer:

A) 3 in

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Geometry</u>

  • Surface Area of a Sphere: SA = 4πr²
  • Diameter: d = 2r

Step-by-step explanation:

<u>Step 1: Define</u>

SA = 23 in²

<u>Step 2: Find </u><em><u>r</u></em>

  1. Substitute [SAS]:                    23 in² = 4πr²
  2. Isolate <em>r </em>term:                         23 in²/(4π) = r²
  3. Isolate <em>r</em>:                                  √[23 in²/(4π)] = r
  4. Rewrite:                                   r = √[23 in²/(4π)]
  5. Evaluate:                                 r = 1.35288 in

<u>Step 3: Find </u><em><u>d</u></em>

  1. Substitute [D]:                    d = 2(1.35288 in)
  2. Multiply:                              d = 2.70576 in
  3. Round:                                d ≈ 3 in
4 0
3 years ago
Other questions:
  • Write an equation passing through the point and parallel to the given line. (4,7);y=3x+4
    9·1 answer
  • Help please again I'll give you a brainliest if you can explain it best for me too! :)
    8·1 answer
  • WHOEVER GIVES RIGHT ANSWER GET 99 POINTS
    14·2 answers
  • What is the answer for 11,12,13,14,15 for analyzing lined ray segments and angles
    13·1 answer
  • Which of the following is equivalent to (p3)(2p2 - 4p)(3p2 - 1)?
    5·2 answers
  • Which equation can be used to determine the reference angle, r, if 0=7 pi/12?
    7·1 answer
  • In the process of completing the square, 3x^2+7x-12 becomes x^2+7/4x=4. True or False
    15·1 answer
  • Marie has a building that is 40 feet wide, 70 feet long, and 16 feet high. How many cubic feet of
    8·1 answer
  • Given 7x + 2 &gt; 58, which number is not in the solution set?
    13·1 answer
  • Can anyone help me with my maths problem.<br>Thank you​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!