1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
5

Suppose a > 0 is constant and consider the parameteric surface sigma given by r(phi, theta) = a sin(phi) cos(theta)i + a sin(

phi) j + a cos(phi) k. 0 lessthanorequalto theta lessthanorequalto 2 pi, 0 lessthanorequalto phi lessthanorequalto pi. (a) Directly verify algebraically that r parameterizes the sphere x^2 + y^2 + z^2 = a^2, by substituting x = a sin(phi), y = a sin(phi) sin(theta), and z = a cos(phi) into the left-hand side of the equation. (b) Find r_phi, r_theta, r_phi times r_theta, and |r_phi times r_theta|. (c) Compute the surface area of the sphere doubleintegral_sigma l dS using change of variables. Find the surface area of the band sigma cut from the paraboloid z = x^2 + y^2 by the planes z = 2 and z = 6 by first finding a parameterization for the surface and then computing doubleintegral_sigma dS. Find the flux of the field F = x^2j - xzk across the surface cut by the parabolic cylinder y = x^2, -1 lessthanorequalto x lessthanorequalto 1, by the planes z = 0 and z = 2, Your normal vector should point in the direction indicated in the figure below.
Mathematics
1 answer:
Gnom [1K]3 years ago
8 0

\Sigma should have parameterization

\vec r(\varphi,\theta)=a\sin\varphi\cos\theta\,\vec\imath+a\sin\varphi\sin\theta\,\vec\jmath+a\cos\varphi\,\vec k

if it's supposed to capture the sphere of radius a centered at the origin. (\sin\theta is missing from the second component)

a. You should substitute x=a\sin\varphi\cos\theta (missing \cos\theta this time...). Then

x^2+y^2+z^2=(a\sin\varphi\cos\theta)^2+(a\sin\varphi\sin\theta)^2+(a\cos\varphi)^2

x^2+y^2+z^2=a^2\left(\sin^2\varphi\cos^2\theta+\sin^2\varphi\sin^2\theta+\cos^2\varphi\right)

x^2+y^2+z^2=a^2\left(\sin^2\varphi\left(\cos^2\theta+\sin^2\theta\right)+\cos^2\varphi\right)

x^2+y^2+z^2=a^2\left(\sin^2\varphi+\cos^2\varphi\right)

x^2+y^2+z^2=a^2

as required.

b. We have

\vec r_\varphi=a\cos\varphi\cos\theta\,\vec\imath+a\cos\varphi\sin\theta\,\vec\jmath-a\sin\varphi\,\vec k

\vec r_\theta=-a\sin\varphi\sin\theta\,\vec\imath+a\sin\varphi\cos\theta\,\vec\jmath

\vec r_\varphi\times\vec r_\theta=a^2\sin^2\varphi\cos\theta\,\vec\imath+a^2\sin^2\varphi\sin\theta\,\vec\jmath+a^2\cos\varphi\sin\varphi\,\vec k

\|\vec r_\varphi\times\vec r_\theta\|=a^2\sin\varphi

c. The surface area of \Sigma is

\displaystyle\iint_\Sigma\mathrm dS=a^2\int_0^\pi\int_0^{2\pi}\sin\varphi\,\mathrm d\theta\,\mathrm d\varphi

You don't need a substitution to compute this. The integration limits are constant, so you can separate the variables to get two integrals. You'd end up with

\displaystyle\iint_\Sigma\mathrm dS=4\pi a^2

# # #

Looks like there's an altogether different question being asked now. Parameterize \Sigma by

\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+u^2\,\vec k

with \sqrt2\le u\le\sqrt6 and 0\le v\le2\pi. Then

\|\vec s_u\times\vec s_v\|=u\sqrt{1+4u^2}

The surface area of \Sigma is

\displaystyle\iint_\Sigma\mathrm dS=\int_0^{2\pi}\int_{\sqrt2}^{\sqrt6}u\sqrt{1+4u^2}\,\mathrm du\,\mathrm dv

The integrand doesn't depend on v, so integration with respect to v contributes a factor of 2\pi. Substitute w=1+4u^2 to get \mathrm dw=8u\,\mathrm du. Then

\displaystyle\iint_\Sigma\mathrm dS=\frac\pi4\int_9^{25}\sqrt w\,\mathrm dw=\frac{49\pi}3

# # #

Looks like yet another different question. No figure was included in your post, so I'll assume the normal vector points outward from the surface, away from the origin.

Parameterize \Sigma by

\vec t(u,v)=u\,\vec\imath+u^2\,\vec\jmath+v\,\vec k

with -1\le u\le1 and 0\le v\le 2. Take the normal vector to \Sigma to be

\vec t_u\times\vec t_v=2u\,\vec\imath-\vec\jmath

Then the flux of \vec F across \Sigma is

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=\int_0^2\int_{-1}^1(u^2\,\vec\jmath-uv\,\vec k)\cdot(2u\,\vec\imath-\vec\jmath)\,\mathrm du\,\mathrm dv

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-\int_0^2\int_{-1}^1u^2\,\mathrm du\,\mathrm dv

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-2\int_{-1}^1u^2\,\mathrm du=-\frac43

If instead the direction is toward the origin, the flux would be positive.

You might be interested in
Color all congruent angles the same color,and list all congruent angles below
Kruka [31]
Were is it at though?
6 0
3 years ago
At the popular restaurant Fire Wok, 55%, percent of guests order the signature dish.
ANTONII [103]

55/100 or 11/20

Since 55% is 55/100 as a fraction. then at it's simplest form it's 11/20.

4 0
3 years ago
Read 2 more answers
Please help with this
Nookie1986 [14]

Answer:You better delete this because brainly moderators will get mad for seeing PDFS like this.

Step-by-step explanation:Happens to me all the time :/

3 0
2 years ago
The answer to this problem
telo118 [61]

Answer:

jdiddbhhuduh9ruruuehgruhrhudhheherj

5 0
2 years ago
If ΔLMN ≅ ΔOPR, m∠L = (x^2 - x)°, m∠P = 16°, m∠N = (4x+160)°. Find m∠R.
Marizza181 [45]

Answer:

mZR = (4x + 160)°

Step-by-step explanation:

cause, mZR = mZN

;-))

8 0
3 years ago
Other questions:
  • 13.If triangle ABC IS CONGRUENT TO TRIANGLE ADC , which is true by CPCTC?
    10·1 answer
  • HElP plS anD ty. ;-;....
    11·1 answer
  • Help asappppppp!!!!!!
    11·1 answer
  • Is -4^2<(-4)^2 a false statement
    7·2 answers
  • In the diagram below, what is the approximate length of the minor arc xy ?
    12·1 answer
  • *Just use 10° for your angle *
    15·1 answer
  • HELP PLEASE!!!!!!!!!!!!!!!!!!!!!!!!!!
    12·2 answers
  • A student council sells 44 bouquets for $176. Which equation represents the
    13·1 answer
  • A model rocket consists of a cone on top of a cylinder.
    6·1 answer
  • Please help !!
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!