1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
5

Suppose a > 0 is constant and consider the parameteric surface sigma given by r(phi, theta) = a sin(phi) cos(theta)i + a sin(

phi) j + a cos(phi) k. 0 lessthanorequalto theta lessthanorequalto 2 pi, 0 lessthanorequalto phi lessthanorequalto pi. (a) Directly verify algebraically that r parameterizes the sphere x^2 + y^2 + z^2 = a^2, by substituting x = a sin(phi), y = a sin(phi) sin(theta), and z = a cos(phi) into the left-hand side of the equation. (b) Find r_phi, r_theta, r_phi times r_theta, and |r_phi times r_theta|. (c) Compute the surface area of the sphere doubleintegral_sigma l dS using change of variables. Find the surface area of the band sigma cut from the paraboloid z = x^2 + y^2 by the planes z = 2 and z = 6 by first finding a parameterization for the surface and then computing doubleintegral_sigma dS. Find the flux of the field F = x^2j - xzk across the surface cut by the parabolic cylinder y = x^2, -1 lessthanorequalto x lessthanorequalto 1, by the planes z = 0 and z = 2, Your normal vector should point in the direction indicated in the figure below.
Mathematics
1 answer:
Gnom [1K]3 years ago
8 0

\Sigma should have parameterization

\vec r(\varphi,\theta)=a\sin\varphi\cos\theta\,\vec\imath+a\sin\varphi\sin\theta\,\vec\jmath+a\cos\varphi\,\vec k

if it's supposed to capture the sphere of radius a centered at the origin. (\sin\theta is missing from the second component)

a. You should substitute x=a\sin\varphi\cos\theta (missing \cos\theta this time...). Then

x^2+y^2+z^2=(a\sin\varphi\cos\theta)^2+(a\sin\varphi\sin\theta)^2+(a\cos\varphi)^2

x^2+y^2+z^2=a^2\left(\sin^2\varphi\cos^2\theta+\sin^2\varphi\sin^2\theta+\cos^2\varphi\right)

x^2+y^2+z^2=a^2\left(\sin^2\varphi\left(\cos^2\theta+\sin^2\theta\right)+\cos^2\varphi\right)

x^2+y^2+z^2=a^2\left(\sin^2\varphi+\cos^2\varphi\right)

x^2+y^2+z^2=a^2

as required.

b. We have

\vec r_\varphi=a\cos\varphi\cos\theta\,\vec\imath+a\cos\varphi\sin\theta\,\vec\jmath-a\sin\varphi\,\vec k

\vec r_\theta=-a\sin\varphi\sin\theta\,\vec\imath+a\sin\varphi\cos\theta\,\vec\jmath

\vec r_\varphi\times\vec r_\theta=a^2\sin^2\varphi\cos\theta\,\vec\imath+a^2\sin^2\varphi\sin\theta\,\vec\jmath+a^2\cos\varphi\sin\varphi\,\vec k

\|\vec r_\varphi\times\vec r_\theta\|=a^2\sin\varphi

c. The surface area of \Sigma is

\displaystyle\iint_\Sigma\mathrm dS=a^2\int_0^\pi\int_0^{2\pi}\sin\varphi\,\mathrm d\theta\,\mathrm d\varphi

You don't need a substitution to compute this. The integration limits are constant, so you can separate the variables to get two integrals. You'd end up with

\displaystyle\iint_\Sigma\mathrm dS=4\pi a^2

# # #

Looks like there's an altogether different question being asked now. Parameterize \Sigma by

\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+u^2\,\vec k

with \sqrt2\le u\le\sqrt6 and 0\le v\le2\pi. Then

\|\vec s_u\times\vec s_v\|=u\sqrt{1+4u^2}

The surface area of \Sigma is

\displaystyle\iint_\Sigma\mathrm dS=\int_0^{2\pi}\int_{\sqrt2}^{\sqrt6}u\sqrt{1+4u^2}\,\mathrm du\,\mathrm dv

The integrand doesn't depend on v, so integration with respect to v contributes a factor of 2\pi. Substitute w=1+4u^2 to get \mathrm dw=8u\,\mathrm du. Then

\displaystyle\iint_\Sigma\mathrm dS=\frac\pi4\int_9^{25}\sqrt w\,\mathrm dw=\frac{49\pi}3

# # #

Looks like yet another different question. No figure was included in your post, so I'll assume the normal vector points outward from the surface, away from the origin.

Parameterize \Sigma by

\vec t(u,v)=u\,\vec\imath+u^2\,\vec\jmath+v\,\vec k

with -1\le u\le1 and 0\le v\le 2. Take the normal vector to \Sigma to be

\vec t_u\times\vec t_v=2u\,\vec\imath-\vec\jmath

Then the flux of \vec F across \Sigma is

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=\int_0^2\int_{-1}^1(u^2\,\vec\jmath-uv\,\vec k)\cdot(2u\,\vec\imath-\vec\jmath)\,\mathrm du\,\mathrm dv

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-\int_0^2\int_{-1}^1u^2\,\mathrm du\,\mathrm dv

\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-2\int_{-1}^1u^2\,\mathrm du=-\frac43

If instead the direction is toward the origin, the flux would be positive.

You might be interested in
I need to know the answer
Anni [7]
The answer is (x+3)(x+5).
7 0
3 years ago
PQ=RQ a=? <br> Please need help!!
Svetllana [295]
A=100°
as 180-140= 40 , 40 x 2 = 80 & 180-80 = 100° = a
5 0
3 years ago
Need help pls .......
sukhopar [10]

Answer:

It should be the last one because rigid transformations doesn't change in size just where it is

7 0
3 years ago
Items produced by a manufacturing process are supposed to weigh 90 grams. The manufacturing procon
Annette [7]

Using the normal distribution, it is found that 0.26% of the items will either  weigh less than 87 grams or more than  93 grams.

In a <em>normal distribution</em> with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

  • It measures how many standard deviations the measure is from the mean.  
  • After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.

In this problem:

  • The mean is of 90 grams, hence \mu = 90.
  • The standard deviation is of 1 gram, hence \sigma = 1.

We want to find the probability of an item <u>differing more than 3 grams from the mean</u>, hence:

Z = \frac{X - \mu}{\sigma}

Z = \frac{3}{1}

Z = 3

The probability is P(|Z| > 3), which is 2 multiplied by the p-value of Z = -3.

  • Looking at the z-table, Z = -3 has a p-value of 0.0013.

2 x 0.0013 = 0.0026

0.0026 x 100% = 0.26%

0.26% of the items will either  weigh less than 87 grams or more than  93 grams.

For more on the normal distribution, you can check brainly.com/question/24663213

4 0
3 years ago
Please help I've been getting this same problem wrong all day lol
worty [1.4K]

Answer:

9\sqrt{2}

Step-by-step explanation:

=3\sqrt{2}+6\sqrt{2}

\mathrm{Add\:similar\:elements:}\:3\sqrt{2}+6\sqrt{2}=9\sqrt{2}

7 0
2 years ago
Read 2 more answers
Other questions:
  • What is the 65% of 200?​
    5·2 answers
  • Solve for p.<br><br> 2(p + 1) = 24
    15·2 answers
  • San Antonio, Texas, is located about 30º north of the equator. If the radius of the Earth is about 3959 miles, how far to the ne
    5·1 answer
  • Identify the center and intercepts of the conic section
    10·1 answer
  • A segment has endpoints A (-1, 1) and B (8, 4) . If the segment is divided into four equal parts, the coordinates of the point c
    7·2 answers
  • What is the value of k
    7·1 answer
  • Help pls lol its timed
    8·2 answers
  • Can someone help with question #4 please
    6·1 answer
  • 12 Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. Match the functions with their periods
    15·1 answer
  • What is 2x=10 if x =2
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!