Answer:
The minimum sample size required is 207.
Step-by-step explanation:
The (1 - <em>α</em>) % confidence interval for population mean <em>μ</em> is:

The margin of error of this confidence interval is:

Given:

*Use a <em>z</em>-table for the critical value.
Compute the value of <em>n</em> as follows:
![MOE=z_{\alpha /2}\frac{\sigma}{\sqrt{n}}\\3=2.576\times \frac{29}{\sqrt{n}} \\n=[\frac{2.576\times29}{3} ]^{2}\\=206.69\\\approx207](https://tex.z-dn.net/?f=MOE%3Dz_%7B%5Calpha%20%2F2%7D%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%5C%5C3%3D2.576%5Ctimes%20%5Cfrac%7B29%7D%7B%5Csqrt%7Bn%7D%7D%20%5C%5Cn%3D%5B%5Cfrac%7B2.576%5Ctimes29%7D%7B3%7D%20%5D%5E%7B2%7D%5C%5C%3D206.69%5C%5C%5Capprox207)
Thus, the minimum sample size required is 207.
3x + 4y = 5
<u>-5x - 4y = -11</u>
-2x = -6
-<u>2x</u> = <u>-6</u>
-2 -2
x = 3
3(3) + 4y = 5
9 + 4y = 5
<u> -9 -9</u>
4y = -4
<u>4y</u> = <u>-4</u>
4 4
y = -1
(x, y) = (3, -1)
Answer:
3:123 4:0 5:13.69
Step-by-step explanation:
I hope this helps
Answer:
11 cakes
Step-by-step explanation:
so you know each cup can make 3 cakes so multiply that by 3 then add 2(from the 2/3 cups)
(2x2x2)(2x2)
=2x2x2x2x2
=2x2x2x2x2
=32