Answer: a) zeros: x = {0, 4, -2}
b) as x → ∞, y → ∞
as x → -∞, y → ∞
<u>Step-by-step explanation:</u>
I think you mean (a) find the zeros and (b) describe the end behavior
(a) Find the zeros by setting each factor equal to zero and solving for x:
x (x - 4) (x + 2)⁴ = 0
- x = 0 Multiplicity of 1 --> odd multiplicity so it crosses the x-axis
- x = 4 Multiplicity of 1 --> odd multiplicity so it crosses the x-axis
- x = -2 <u>Multiplicity of 4 </u> --> even multiplicity so it touches the x-axis
Degree = 6
(b) End behavior is determined by the following two criteria:
- Sign of Leading Coefficient (Right side): Positive is ↑, Negative is ↓
- Degree (Left side): Even is same direction as right side, Odd is opposite direction of right side
Sign of the leading coefficient is Positive so right side goes UP
as x → ∞, y → ∞
Degree of 6 is Even so Left side is the same direction as right (UP)
as x → -∞, y → ∞
Answer:
dy/dx = (x^2 - 3)^sin x [2x sin x/ (x^2 - 3) + cos x ln(x^2 - 3)]
Step-by-step explanation:
y = (x^2 - 3)^sinx
ln y = ln (x^2 - 3)^sinx
ln y = sin x * ln (x^2 - 3)
1/y * dy/dx = sin x * {1 / (x^2 - 3)} * 2x + ln(x^2 - 3) * cos x
1/y dy/dx = 2x sin x/ (x^2 - 3) + cos x ln(x^2 - 3)
dy/dx = [2x sin x/ (x^2 - 3) + cos x ln(x^2 - 3)] * y
dy/dx = (x^2 - 3)^sin x [2x sin x/ (x^2 - 3) + cos x ln(x^2 - 3)]
Answer:
The equation listed is linear because 2x is a constant, meaning that it continuously moves in a straight line in one set direction.
Step-by-step explanation:
<span>(y^5)^2 = y^10
This is power of a power property</span>
You stop at 2 decimal points. If the 3rd decimal is bigger than 5, add 1 to the 2nd and if it's less than 5, keep it as it is.
For example:
2.663 --> 2.66
6.788 --> 6.79