Answer : The formula of the gas produced is,
(phosphine gas)
Explanation :
According to the question, when sodium phosphide is treated with water then it react to give phosphine gas and sodium hydroxide.
The balanced chemical reaction will be:

By Stoichiometry of the reaction we can say that:
1 mole of sodium phosphide reacts with 3 moles of water to give 1 mole of phosphine gas and 3 moles of sodium hydroxide.
Thus, the formula of the gas produced is,
(phosphine gas)
Answer:
6 different forms of the protein could be made.
Explanation:
For the given nematode worm, 6 different forms of the protein could be made. This is because of the alternative splicing that will produce 6 kinds of mRNAs. We have 2 different forms for the exon 4 while we have 3 differen forms for the exon 7. Therefore, we have a total of (2*3) 6 different forms of the protein for the given nematode worm.
B ............ is the answer,
Answer:
The answer is C. Organ systems please brainly me!
Explanation:
<h3>
Answer:</h3>
495 g K₃N
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.77 mol K₃N
<u>Step 2: Identify Conversions</u>
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of K₃N - 3(39.10) + 14.01 = 131.31 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
495.039 g K₃N ≈ 495 g K₃N