Correct Answer: Option C
Reason:
<span>The </span>Pauli Exclusion Principle<span> states as '<em>in an atom or molecule, no two electrons can have the same four electronic quantum numbers. Further, an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.</em>'
</span>
Thus, it can be seen that in option C, electrons in last 2 subshell have electrons with same spin, which is a violation of Pauli Exclusion Principle .
To determine the number of moles of carbon dioxide that is produced, we need to know the reaction of the process. For the reaction of HCl and sodium carbonate, the balanced chemical equation would be expressed as:
2HCl + Na2CO3 = 2NaCl + H2O + CO2
From the initial amount given of sodium carbonate and the relation of the substances from the balanced reaction, we calculate the moles of carbon dioxide as follows:
0.2 moles Na2Co3 ( 1 mol CO2 / 1 mol Na2Co3 ) = 0.2 moles CO2
Therefore, the amount in moles of carbon dioxide that is produced from 0.2 moles sodium carbonate would be 0.2 moles as well.
Answer: 8.691 mols of CO₂
Explanation:
To find the number of moles in a given grams, you want to use the molar mass.
Let's first find the molar mass of CO₂.
Carbon's molar mass is 12.011 g/mol
Oxygen's molar mass is 15.999 g/mol
To find molar mass of CO₂, we want to add up the molar mass of carbon and oxygen. Remember, there are 2 Oxygens so we need to mulitply that by 2.
12.011+2(15.999)=44.009 g/mol
Now that we have molar mass, we can convert 382.5 g to mols.

There are about 8.691 mols of CO₂.
Answer:
Uranium-238 undergoes alpha decay to form Thorium-234 as daughter product.
Explanation:
Alpha decay is indicative of loss of the equivalents of a helium particle emission. The reaction equation for this reaction is shown below:
→ 
I hope this explanation is clear and explanatory.
Na 1s²2s²2p⁶3s¹
↓ - e⁻
Na⁺ 1s²2s²2p⁶ 2+2+6=10 e⁻
10 electrons are in sodium ion Na⁺