1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
11

Given: cos(2x)=-1/9 Angle x is in quadrant I. Find: cos(x)

Mathematics
1 answer:
sergey [27]3 years ago
5 0
My opinion about this answer is 7
You might be interested in
Your mortgage is $135,400.00 at a 5.25% APR. If you pay $1,500.00 towards the mortgage each month, how much of your second month
Serjik [45]
For the answer to the question above, n the 1st month, the accrued interest is ___ (1/12) * .0525 * 135400 

subtract the interest from the payment to find the change in the principal for the 2nd month 

find the 2nd month's interest and subtract from the payment to find the amount applied to principal. Then that's it!
8 0
3 years ago
Read 2 more answers
A scale drawing of a kitchen is shown below. The scale is 1 : 20.
Arada [10]

Answer:

0.138889

Step-by-step explanation:

formula is to divide by 144

which first you multiply 5×4 which gives you 20

therefore 20÷144

=0.138889

3 0
2 years ago
Read 2 more answers
What is the volume of a sphere with a radius of 6 mm?
DanielleElmas [232]
Maybe 6 but I’m not sure.
4 0
3 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
The distance around a neighborhood is 4 miles. When clicking it with an odometer, the distance was 3.8 miles. What is the percen
Snowcat [4.5K]
It has to be 0.2 or something
6 0
3 years ago
Other questions:
  • Jack is purchasing a stock that pays an annual dividend of $3.42 per share. If he purchases 400 shares for $53.18 per share, wha
    14·1 answer
  • 6 1/2 how many inches ​
    11·1 answer
  • Alex mixes 2/3 pounds of walnuts with 3/5 pound of dried fruit. To create more of the same mixture, how many pounds of walnuts d
    13·1 answer
  • Can someone help me in the last one's ? number 49, 50, 51, 52
    5·1 answer
  • -5/7 (10 -1/5) Math equation
    6·1 answer
  • A circle has an area of 81
    12·1 answer
  • WILL MARK U AS BRAINLIEST PLZ HELP
    11·1 answer
  • Help me pleaseeeee I need this quick
    13·1 answer
  • – 6 x + 4 &lt; 29 answer?
    12·1 answer
  • An aircraft travels for 30 minutes at an average speed of 37 mph. how far did the airplane travel?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!