the graph of y=e^tanx-2 crosses the x axis at one point in the interval [0,1]. What is the slope of the graph at this point? I g
et 3.08267 but it's not the right answer
1 answer:
Y = e^tanx - 2
To find at which point it crosses x axis we state that y= 0
e^tanx - 2 = 0
e^tanx = 2
tanx = ln 2
tanx = 0.69314
x = 0.6061
to find slope at that point first we need to find first derivative of funtion y.
y' = (e^tanx)*1/cos^2(x)
now we express x = 0.6061 in y' and we get:
y' = k = 2,9599
You might be interested in
70+80+(m+10)= 180°
150+m+10=180
160+m=180
m=20°
I will take 4 hours for it to be be 12 inches above its flood stage
Answer:
The correct answer is "
".
Step-by-step explanation:
Given:
n = 21
s = 3.3
c = 0.9
now,
![df = n-1](https://tex.z-dn.net/?f=df%20%3D%20n-1)
![=20](https://tex.z-dn.net/?f=%3D20)
⇒
=
= ![31.410](https://tex.z-dn.net/?f=31.410)
⇒
= ![10.851](https://tex.z-dn.net/?f=10.851)
hence,
The 90% Confidence interval will be:
= ![\sqrt{\frac{(n-1)s^2}{x^2_{\frac{\alpha}{2}, n-1 }} } < \sigma < \sqrt{\frac{(n-1)s^2}{x^2_{1-\frac{\alpha}{2}, n-1 }}](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cfrac%7B%28n-1%29s%5E2%7D%7Bx%5E2_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%2C%20n-1%20%7D%7D%20%7D%20%3C%20%5Csigma%20%3C%20%5Csqrt%7B%5Cfrac%7B%28n-1%29s%5E2%7D%7Bx%5E2_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%2C%20n-1%20%7D%7D)
= ![\sqrt{\frac{(21-1)3.3^2}{31.410} } < \sigma < \sqrt{\frac{(21.1)3.3^2}{10.851} }](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cfrac%7B%2821-1%293.3%5E2%7D%7B31.410%7D%20%7D%20%3C%20%5Csigma%20%3C%20%5Csqrt%7B%5Cfrac%7B%2821.1%293.3%5E2%7D%7B10.851%7D%20%7D)
= ![\sqrt{\frac{20\times 3.3^2}{31.410} } < \sigma < \sqrt{\frac{20\times 3.3^2}{10.851} }](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cfrac%7B20%5Ctimes%203.3%5E2%7D%7B31.410%7D%20%7D%20%3C%20%5Csigma%20%3C%20%5Csqrt%7B%5Cfrac%7B20%5Ctimes%203.3%5E2%7D%7B10.851%7D%20%7D)
= ![2.633< \sigma < 4.480](https://tex.z-dn.net/?f=2.633%3C%20%5Csigma%20%3C%204.480)
4
That’s what my tutor told me