Answer:
$0.43
Step-by-step explanation:
First, we must divide $3.87 by 9.
<em>Hope</em><em> </em><em>this</em><em> </em><em>helped</em><em> </em><em>:</em><em>)</em>
<em>Please</em><em> </em><em>mark</em><em> </em><em>brainliest</em><em> </em><em>if</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em>
These are two questions and two answers.
Question 1) Which of the following polar equations is equivalent to the parametric equations below?
<span>
x=t²
y=2t</span>
Answer: option <span>A.) r = 4cot(theta)csc(theta)
</span>
Explanation:
1) Polar coordinates ⇒ x = r cosθ and y = r sinθ
2) replace x and y in the parametric equations:
r cosθ = t²
r sinθ = 2t
3) work r sinθ = 2t
r sinθ/2 = t
(r sinθ / 2)² = t²
4) equal both expressions for t²
r cos θ = (r sin θ / 2 )²
5) simplify
r cos θ = r² (sin θ)² / 4
4 = r (sinθ)² / cos θ
r = 4 cosθ / (sinθ)²
r = 4 cot θ csc θ ↔ which is the option A.
Question 2) Which polar equation is equivalent to the parametric equations below?
<span>
x=sin(theta)cos(theta)+cos(theta)
y=sin^2(theta)+sin(theta)</span>
Answer: option B) r = sinθ + 1
Explanation:
1) Polar coordinates ⇒ x = r cosθ, and y = r sinθ
2) replace x and y in the parametric equations:
a) r cosθ = sin(θ)cos(θ)+cos(θ)
<span>
b) r sinθ =sin²(θ)+sin(θ)</span>
3) work both equations
a) r cosθ = sin(θ)cos(θ)+cos(θ) ⇒ r cosθ = cosθ [ sin θ + 1] ⇒ r = sinθ + 1
<span>
b) r sinθ =sin²(θ)+sin(θ) ⇒ r sinθ = sinθ [sinθ + 1] ⇒ r = sinθ + 1
</span><span>
</span><span>
</span>Therefore, the answer is r = sinθ + 1 which is the option B.
x+3-1.26923+4.12821 so if I am wrong it took me a while to work this out
Answer:
hope it helps
Step-by-step explanation:
angle < EDG = 90°
5x + 4x = 90
9x = 90
x = 90/9
x = 10°
which means
5x = 50°
4x = 40°
---------------------------
sice EF and DG are parallel lines
EHD = 40°
DHG is 90°
then HGD = 50°
-----------------------------------------
ED = 64 x2 (2 sides) = 128 inches
DG = 84 x2 (2 sides) = 168 inches
total perimeter = 128 + 168 = 296 inches
and yes. theres enough room for all 3 to cuddle
The answer is q=15
Hope this helps ya