13.4 billion years is 3 times of the half-life, 4.47 billion years. So the Uranium-238 will go through three times of half decay. So the remain percentage will be 50%*50%*50%=12.5%.
Answer:
Mass= 2.77g
Explanation:
Applying
P=2.09atm, V= 1.13L, R= 0.082, T= 291K, Mm of N2= 28
PV=nRT
NB
Moles(n) = m/M
PV=m/M×RT
m= PVM/RT
Substitute and Simplify
m= (2.09×1.13×28)/(0.082×291)
m= 2.77g
The formula to find yield is
(Actual Yield)/(Theorectical Yield) x100
Just do the math.
85.22% x 113 = 96.2986
Convert it to 3 significant figures
Ans: 96.3g
1. Intensive.
2. Physical.
Hope this helps. :)
Answer:
D. The rate decreases as reactants are used up.
Explanation:
Initially, the rate increases until the reaction is at equilibrium. At equilibrium, the rate is constant.
As the reaction progresses, the rate decreases to zero when reactants are used up ( for irriversible reactions only )