Answer:
Catalase
Explanation:
These reactive oxygen specie or free radicals that cause damage or injury to cells also lead to oxidative stress if unchecked by antioxidants. As suggested in the question, there are several enzymes that act as antioxidants in mitigating the effects of these reactive oxygen specie or free radicals. These enzymes include catalase, superoxide dismutase and glutathiones (such as glutathione s-transferase).
The enzyme that however prevents the accumulation of hydrogen peroxide (H₂O₂) in the peroxisome is catalase. Catalase is an enzyme that is present in the peroxisome; it (catalase) detoxifies/acts on H₂O₂, converting it (H₂O₂) into water and oxygen.
You need to use the ideal gas law (PV=nRT) and solve for n. ((3.50atm•10.0L)/(0.0821(L•atm/mol•K)•304K) = n = 1.40 moles. 1 mole of Cl2 = 70.9 gm/mole. The mass would be 99.43 gm
The one that is not a compound is Cl
Answer:
Explanation:
The movement of the electrons is illustrated in the picture attached to this answer. It is a four-step reaction mechanism.
First STEP: The first step involves the transfer of an electron from sodium to form a radical anion.
Second STEP: This radical anion then removes a proton/hydrogen from ammonia in a bid to neutralize itself (hence the hydrogen becomes bonded to the anion).
Third STEP: The sodium (from NaNH₂ formed) transfers an electron again to produce a vinyl carbanion.
Fourth STEP: The carbanion then removes a proton/hydrogen from ammonia (like in the second step) to form a neutral trans-alkene.
NOTE: The circled numbers denote each step while the mechanism on the left represents the use of any alkyl group (R and R') while the mechanism on the right assumes both alkyl groups are methyl. Hence, 2-butyne started the reaction and the final product was trans-2-butene.
Answer:
The correct answer is 146 g/mol
Explanation:
<em>Freezing point depression</em> is a colligative property related to the number of particles of solute dissolved in a solvent. It is given by:
ΔTf = Kf x m
Where ΔTf is the freezing point depression (in ºC), Kf is a constant for the solvent and m is the molality of solution. From the problem, we know the following data:
ΔTf = 1.02ºC
Kf = 5.12ºC/m
From this, we can calculate the molality:
m = ΔTf/Kf = 1.02ºC/(5.12ºC/m)= 0.199 m
The molality of a solution is defined as the moles of solute per kg of solvent. Thus, we can multiply the molality by the mass of solvent in kg (250 g= 0.25 kg) to obtain the moles of solute:
0.199 mol/kg benzene x 0.25 kg = 0.0498 moles solute
There are 0.0498 moles of solute dissolved in the solution. To calculate the molar mass of the solute, we divide the mass (7.27 g) into the moles:
molar mass = mass/mol = 7.27 g/(0.0498 mol) = 145.9 g/mol ≅ 146 g/mol
<em>Therefore, the molar mass of the compound is 146 g/mol </em>