Answer:
Transition Element
Explanation:
Transition elements are defined as those elements which can form at least one stable ion and has partially filled d-orbitals. They are also characterized by forming complex compounds and having different oxidation states for a single metal element.
Transition metals are present between the metals and the non metals in the periodic table occupying groups from 3 to 12. There general electronic configuration is as follow,
(n-1)d
¹⁻¹⁰ns
¹⁻²
The general configuration shows that for a given metal, the d sublevel will be in lower energy level as compared to corresponding s sublevel. For example,
Scandium is present in fourth period hence, its s sublevel is present in 4rth energy level so its d sublevel will be present in 3rd energy level respectively.
Hence, we can conclude that for transition metals the electron are present in highest occupied s sublevel and a nearby d sublevel
.
H %= 100- (52.14 + 34. 73) equals 13.13 %
Assuming 100 g of this compound
Mass H= 13.13 g
Moles H= 13.13 g ÷ 1.008g/ moles= 13
Mass C= 52.14 g
Moles C= 52.14 g ÷ 12.011 g/ moles= 4
The empirical formula is C4H1302
Answer:

Explanation:
<u><em>1. First determine the empirical formula.</em></u>
a) Base: 100 g of compound
mass atomic mass number of moles
g g/mol mol
C 26.06 12.011 26.06/12.011 = 2.17
H 13.13 1.008 13.13/1.008 = 13.03
N 60.81 14.007 60.81/14.007 = 4.34
b) Divide every number of moles by the smallest number: 2.17
mass number of moles proportion
C 2.17/2.17 1
H 13.03/2.17 6
N 4.34/2.17 2
c) Empirical formula

d) Mass of the empirical formula

<u><em>2. Molecular formula</em></u>
Since the mass of one unit of the empirical formula is equal to the molar mass of the compound, the molecular formula is the same as the empirical formula:
