Answers
9(x + y)
(7 - a)(b)
The Distributive Property is used in algebraic expressions to multiply a
single term and two or more terms which are inside a set of parentheses.
In the case of x(2y), there is only
one term inside the parenthesis
In the case of 9(x ∙ y), the distributive
property is not used because (x ∙ y) = xy which means only one term will be
multiplied by the term outside the parenthesis (9)
In the case of 9(x + y), the distributive
property is used because the two terms in the parenthesis (x and y) will be
multiplied by the term outside the parenthesis (9)
9(x + y) = 9*x + 9*y (by applying the distributive property)
In the case of (7 ∙ a)(b), the distributive
property is not used because (7 ∙ a) = 7a which means only one term will be
multiplied by the term outside the parenthesis (b)
In the case of (7 - a)(b), the distributive
property is used because the two terms in the parenthesis (7 and -a) will be
multiplied by the term outside the parenthesis (b)
(7 - a)(b) = 7*b - a*b (by applying the distributive
property)
In the case of (2 ∙ x) ∙ y, the distributive
property is not used because (2 ∙ x) = 2x which means only one term will be
multiplied by the term outside the parenthesis (y)
2.2 = 1.4d + 3.7 - 5.4d = 3.7 - 4d
4d = 3.7 - 2.2 = 1.5
d = 1.5/4 = 0.375