1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
12

Each front tire on a particular type of vehicle is supposed to be filled to a pressure of 26 psi. Suppose the actual air pressur

e in each tire is a random variable X for the right tire and Y for the left tire, wiht joint pdf
f(x, y) = {K(x2 + y2) 0 20 le x le 30 and 20 le

1) What is the value of K?

2) What is the probability that both tires are underfilled?

3) What is the probability that the difference in air pressure between the two tires is at most 2 psi?

4) Determine the marginal distribution of air pressure in the right tire alone.

5) Are X and Y independent random variables?

6) Determine the conditional pdf of Y given that X=x and the conditional pdf of X given that Y=y.

7) If the pressure in the right tire is found to be 22 psi, what is the probability that the left tire has a pressure of at least 25 psi? Compare this to P(Y>=25)

8) If the pressure in the right tire is found to be 22 psi, what is the expected pressure in the left tire, and what is the standard deivation of pressure in this tire?
Mathematics
1 answer:
Ostrovityanka [42]3 years ago
3 0

Answer:

1) K = 7.895 × 10⁻⁶

2) 0.3024

3)  3.6775 × 10⁻²

4) f(x)= \frac{1}{20} +\frac{3x^{2} }{38000}

5) X and Y are not independent variables

6)

h(x\mid y)  = \frac{38000x^2+38000y^2}{3y^2+19000}

7)  0.54967

8)  25.33 psi

σ = 2.875

Step-by-step explanation:

1) Here we have

f(x, y) =\begin{cases} & \text (x^{2}+y^{2}) \right. 20\leq x\leq 30 & \ 0 \, Otherwise\end{cases}

\int_{x}\int_{y} f(x, y)dydx = 1    

\int_{x}( \right )\int_{y} f(x, y)dy)dx = 1

K\int_{x}( \right )\int_{y}(x^{2} +y^{2})dy)dx = 1

K\int_{x}( (x^{2}y +\frac{y^{3}}{3})_{20}^{30})dx = 1

K\int_{x}( (x^{2}(30-20)) +\frac{30^{3}-20^{3}}{3})_{20}^{30})dx = 1

K\int_{x}( (10x^{2})+\frac{19000}{3})_{20}^{30})dx = 1

K( (10\frac{x^{3}}{3})+\frac{19000}{3}x)_{20}^{30})= 1

K( (10\frac{30^{3}-20^{3}}{3})+\frac{19000}{3}(30-20)))_{20}^{30}) = 1

K =\frac{3}{380000}

2) The probability that both tires are underfilled

P(X≤26,Y≤26) =

\int_{20}^{26} \int_{20}^{26}K(x^{2}+y^{2})dydx

=K\int_{x}( \right )\int_{y}(x^{2} +y^{2})dy)dx

= K\int_{x}( (x^{2}y +\frac{y^{3}}{3})_{20}^{26})dx

K\int_{x}( (x^{2}(26-20)) +\frac{26^{3}-20^{3}}{3})_{20}^{26})dx

K\int_{x}( (6x^{2})+\frac{9576}{3})_{20}^{26})dx

K( (6\frac{x^{3}}{3})+\frac{9576}{3}x)_{20}^{26})

K( (6\frac{26^{3}-20^{3}}{3})+\frac{9576}{3}(26-20)))_{20}^{26})

38304\times K =\frac{3\times38304}{380000}

= 0.3024

That is P(X≤26,Y≤26) = 0.3024

3) The probability that the difference in air pressure between the two tires is at most 2 psi is given by

{20 ≤ x ≤ 30, 20 ≤ y ≤ 30, |  x-y | ≤ 2}

{20 ≤ x ≤ 30, 20 ≤ y ≤ 30, \sqrt{(x-y)^2} ≤ 2}

{20 ≤ x ≤ 30, 20 ≤ y ≤ 30, y ≤ x - 2}

Which gives

20 ≤ x ≤ 22 ::      20 ≤ y ≤ x + 2

22 ≤ x ≤ 28 ::      x - 2 ≤ y ≤ x + 2

28 ≤ x ≤ 30 ::      x - 2 ≤ y ≤ 30

From which we derive probability as

P( |  x-y | ≤2) =  \int_{28}^{30} \int_{x-2}^{30}K(x^{2}+y^{2})dydx +  \int_{20}^{22} \int_{20}^{x+2}K(x^{2}+y^{2})dydx +  \int_{22}^{28} \int_{x-2}^{x+2}K(x^{2}+y^{2})dydx

= K (  \int_{28}^{30} \int_{x-2}^{30}K(x^{2}+y^{2})dydx +  \int_{20}^{22} \int_{20}^{x+2}K(x^{2}+y^{2})dydx +  \int_{22}^{28} \int_{x-2}^{x+2}K(x^{2}+y^{2})dydx)

= K\left [ \left (\frac{14804}{15}  \right )+\left (\frac{8204}{15}  \right ) +\left (\frac{46864}{15}  \right )\right ] = \frac{3}{380000}\times \frac{69872}{15} =\frac{4367}{118750} = 3.6775 × 10⁻²

4) The marginal pressure distribution in the right tire is

f_{x}\left ( x \right )=\int_{y} f(x ,y)dy

=K( \right )\int_{y}(x^{2} +y^{2})dy)

= K( (x^{2}y +\frac{y^{3}}{3})_{20}^{30})

K( (x^{2}(30-20)) +\frac{30^{3}-20^{3}}{3})_{20}^{30})

K(10x^{2}+\frac{19000}{3})}

\frac{3}{38000} (10x^{2}+\frac{19000}{3})}

= \frac{1}{20} +\frac{3x^{2} }{38000}

f(x)= \frac{1}{20} +\frac{3x^{2} }{38000}

5) Here we have

The product of marginal distribution given by

f_x(x) f_y(y) = ( \frac{1}{20} +\frac{3x^{2} }{38000})( \frac{1}{20} +\frac{3y^{2} }{38000}) =\frac{(3x^2+1900)(3y^2+1900)}{1444000000}

≠ f(x,y)

X and Y are not independent variables since the product of the marginal distribution is not joint probability distribution function.

6) Here we have the conditional probability of Y given X = x and the conditional probability of X given that Y = y is given by

h(y\mid x) =\frac{f(x,y))}{f_{X}\left (x  \right )}=  Here we have

 

h(y\mid x) =\frac{x^2+y^2}{\frac{1}{20} +\frac{3x^2}{38000} } = \frac{38000x^2+38000y^2}{3x^2+19000}

Similarly, the the conditional probability of X given that Y = y is given by

h(x\mid y) =\frac{x^2+y^2}{\frac{1}{20} +\frac{3y^2}{38000} } = \frac{38000x^2+38000y^2}{3y^2+19000}

7) Here we have

When the pressure in the left tire is at least 25 psi gives

K\int\limits^{25}_{20}  \frac{38000x^2+38000y^2}{3x^2+19000} {} \, dx

Since x = 22 psi, we have

K\int\limits^{25}_{20}  \frac{38000\cdot 25^2+38000y^2}{3\cdot 25^2+19000} {} \, dx = K \int\limits^{25}_{20}  10.066y^2+6291.39, dx = 57041.942\times \frac{3}{380000}= 0.45033

For P(Y≥25) we have

K \int\limits^{30}_{25}  10.066y^2+6291.39, dx = 69624.72\times \frac{3}{380000} = 0.54967

8) The expected pressure is the conditional mean given by

E(Y\mid x) = K\int\limits^{30}_{20} yh(y \mid x)\, dy

E(Y\mid x) = K\int\limits^{30}_{20} 10.066y^3+6291.39y\, dy = \frac{3}{380000} \times 3208609.27153

= 25.33 psi

The standard deviation is given by

Standard \, deviation =\sqrt{Variance}

Variance = K\int\limits^{30}_{20} [y-E(Y\mid x) ]^2h(y \mid x)\, dy

=K\int\limits^{30}_{20} [y-25.33]^2(10.066y^2+6291.39)\, dy

= \frac{3}{380000} \times 1047259.78 = 8.268

The standard deviation = √8.268 = 2.875.

You might be interested in
If charged per cut, how much will it cost
melisa1 [442]

Answer:

24 because if your cutting 8 pieces and 4 pieces is 12 then all you have to do is multiply 12 x 2 which equals 24!

Step-by-step explanation:

7 0
2 years ago
Syma will spend more than $32 on gifts. So far, she has spent $15 . What are the possible additional amounts she will spend? Use
julia-pushkina [17]

Answer:

Step-by-step explanation:

3 0
3 years ago
Find the value of x, rounded to the nearest tenth?
Stolb23 [73]

Answer:

Step-by-step explanation:

we can use the trigonometric function in a right triangle

cos x = adjacent side to the angle /hypothenuse

cos 36°= x/10  ; multiply both sides by 10

10 * cos 36° = x ; make sure your calculator mode is in degrees

8.1  = x

4 0
3 years ago
Greatest common factor <br>3a^3+9a^2​
BaLLatris [955]

Answer:

27A+81A =108

Step-by-step explanation:

7 0
3 years ago
to troubleshoot a problem in a complex computer system you need to seek help from a ____ team. ( tech)
ioda
Here you need an adjective of the given word (Tech), so the answer is technical.
7 0
3 years ago
Read 2 more answers
Other questions:
  • Barry’s Bagel Emporium sells a dozen bagels for $5.00. This price is no longer high enough to create a profit. The owner decides
    9·1 answer
  • Evaluate the expression when x = 4. 3x + 2 A. 36 B. 24 C. 18 D. 14
    7·1 answer
  • PLEASE HELP FAST!! <br> Giving all my points. And will mark brainliest
    11·2 answers
  • What is the value of 2²+5²​
    14·1 answer
  • Whats the answer for -3(r-4)&gt;0
    15·1 answer
  • Which animal traveled at a rate of 1.5 meters per minute?
    11·2 answers
  • FIRST GETS BRAINLEST __ Several tourists are participating in different
    15·2 answers
  • Convert 58 to a percent.<br><br> Do not include the "%" sign in your answer.
    11·2 answers
  • I need the answer fast please
    15·1 answer
  • What is the negative solution to this equation? 4x^2+12x=135​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!