1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
12

Each front tire on a particular type of vehicle is supposed to be filled to a pressure of 26 psi. Suppose the actual air pressur

e in each tire is a random variable X for the right tire and Y for the left tire, wiht joint pdf
f(x, y) = {K(x2 + y2) 0 20 le x le 30 and 20 le

1) What is the value of K?

2) What is the probability that both tires are underfilled?

3) What is the probability that the difference in air pressure between the two tires is at most 2 psi?

4) Determine the marginal distribution of air pressure in the right tire alone.

5) Are X and Y independent random variables?

6) Determine the conditional pdf of Y given that X=x and the conditional pdf of X given that Y=y.

7) If the pressure in the right tire is found to be 22 psi, what is the probability that the left tire has a pressure of at least 25 psi? Compare this to P(Y>=25)

8) If the pressure in the right tire is found to be 22 psi, what is the expected pressure in the left tire, and what is the standard deivation of pressure in this tire?
Mathematics
1 answer:
Ostrovityanka [42]3 years ago
3 0

Answer:

1) K = 7.895 × 10⁻⁶

2) 0.3024

3)  3.6775 × 10⁻²

4) f(x)= \frac{1}{20} +\frac{3x^{2} }{38000}

5) X and Y are not independent variables

6)

h(x\mid y)  = \frac{38000x^2+38000y^2}{3y^2+19000}

7)  0.54967

8)  25.33 psi

σ = 2.875

Step-by-step explanation:

1) Here we have

f(x, y) =\begin{cases} & \text (x^{2}+y^{2}) \right. 20\leq x\leq 30 & \ 0 \, Otherwise\end{cases}

\int_{x}\int_{y} f(x, y)dydx = 1    

\int_{x}( \right )\int_{y} f(x, y)dy)dx = 1

K\int_{x}( \right )\int_{y}(x^{2} +y^{2})dy)dx = 1

K\int_{x}( (x^{2}y +\frac{y^{3}}{3})_{20}^{30})dx = 1

K\int_{x}( (x^{2}(30-20)) +\frac{30^{3}-20^{3}}{3})_{20}^{30})dx = 1

K\int_{x}( (10x^{2})+\frac{19000}{3})_{20}^{30})dx = 1

K( (10\frac{x^{3}}{3})+\frac{19000}{3}x)_{20}^{30})= 1

K( (10\frac{30^{3}-20^{3}}{3})+\frac{19000}{3}(30-20)))_{20}^{30}) = 1

K =\frac{3}{380000}

2) The probability that both tires are underfilled

P(X≤26,Y≤26) =

\int_{20}^{26} \int_{20}^{26}K(x^{2}+y^{2})dydx

=K\int_{x}( \right )\int_{y}(x^{2} +y^{2})dy)dx

= K\int_{x}( (x^{2}y +\frac{y^{3}}{3})_{20}^{26})dx

K\int_{x}( (x^{2}(26-20)) +\frac{26^{3}-20^{3}}{3})_{20}^{26})dx

K\int_{x}( (6x^{2})+\frac{9576}{3})_{20}^{26})dx

K( (6\frac{x^{3}}{3})+\frac{9576}{3}x)_{20}^{26})

K( (6\frac{26^{3}-20^{3}}{3})+\frac{9576}{3}(26-20)))_{20}^{26})

38304\times K =\frac{3\times38304}{380000}

= 0.3024

That is P(X≤26,Y≤26) = 0.3024

3) The probability that the difference in air pressure between the two tires is at most 2 psi is given by

{20 ≤ x ≤ 30, 20 ≤ y ≤ 30, |  x-y | ≤ 2}

{20 ≤ x ≤ 30, 20 ≤ y ≤ 30, \sqrt{(x-y)^2} ≤ 2}

{20 ≤ x ≤ 30, 20 ≤ y ≤ 30, y ≤ x - 2}

Which gives

20 ≤ x ≤ 22 ::      20 ≤ y ≤ x + 2

22 ≤ x ≤ 28 ::      x - 2 ≤ y ≤ x + 2

28 ≤ x ≤ 30 ::      x - 2 ≤ y ≤ 30

From which we derive probability as

P( |  x-y | ≤2) =  \int_{28}^{30} \int_{x-2}^{30}K(x^{2}+y^{2})dydx +  \int_{20}^{22} \int_{20}^{x+2}K(x^{2}+y^{2})dydx +  \int_{22}^{28} \int_{x-2}^{x+2}K(x^{2}+y^{2})dydx

= K (  \int_{28}^{30} \int_{x-2}^{30}K(x^{2}+y^{2})dydx +  \int_{20}^{22} \int_{20}^{x+2}K(x^{2}+y^{2})dydx +  \int_{22}^{28} \int_{x-2}^{x+2}K(x^{2}+y^{2})dydx)

= K\left [ \left (\frac{14804}{15}  \right )+\left (\frac{8204}{15}  \right ) +\left (\frac{46864}{15}  \right )\right ] = \frac{3}{380000}\times \frac{69872}{15} =\frac{4367}{118750} = 3.6775 × 10⁻²

4) The marginal pressure distribution in the right tire is

f_{x}\left ( x \right )=\int_{y} f(x ,y)dy

=K( \right )\int_{y}(x^{2} +y^{2})dy)

= K( (x^{2}y +\frac{y^{3}}{3})_{20}^{30})

K( (x^{2}(30-20)) +\frac{30^{3}-20^{3}}{3})_{20}^{30})

K(10x^{2}+\frac{19000}{3})}

\frac{3}{38000} (10x^{2}+\frac{19000}{3})}

= \frac{1}{20} +\frac{3x^{2} }{38000}

f(x)= \frac{1}{20} +\frac{3x^{2} }{38000}

5) Here we have

The product of marginal distribution given by

f_x(x) f_y(y) = ( \frac{1}{20} +\frac{3x^{2} }{38000})( \frac{1}{20} +\frac{3y^{2} }{38000}) =\frac{(3x^2+1900)(3y^2+1900)}{1444000000}

≠ f(x,y)

X and Y are not independent variables since the product of the marginal distribution is not joint probability distribution function.

6) Here we have the conditional probability of Y given X = x and the conditional probability of X given that Y = y is given by

h(y\mid x) =\frac{f(x,y))}{f_{X}\left (x  \right )}=  Here we have

 

h(y\mid x) =\frac{x^2+y^2}{\frac{1}{20} +\frac{3x^2}{38000} } = \frac{38000x^2+38000y^2}{3x^2+19000}

Similarly, the the conditional probability of X given that Y = y is given by

h(x\mid y) =\frac{x^2+y^2}{\frac{1}{20} +\frac{3y^2}{38000} } = \frac{38000x^2+38000y^2}{3y^2+19000}

7) Here we have

When the pressure in the left tire is at least 25 psi gives

K\int\limits^{25}_{20}  \frac{38000x^2+38000y^2}{3x^2+19000} {} \, dx

Since x = 22 psi, we have

K\int\limits^{25}_{20}  \frac{38000\cdot 25^2+38000y^2}{3\cdot 25^2+19000} {} \, dx = K \int\limits^{25}_{20}  10.066y^2+6291.39, dx = 57041.942\times \frac{3}{380000}= 0.45033

For P(Y≥25) we have

K \int\limits^{30}_{25}  10.066y^2+6291.39, dx = 69624.72\times \frac{3}{380000} = 0.54967

8) The expected pressure is the conditional mean given by

E(Y\mid x) = K\int\limits^{30}_{20} yh(y \mid x)\, dy

E(Y\mid x) = K\int\limits^{30}_{20} 10.066y^3+6291.39y\, dy = \frac{3}{380000} \times 3208609.27153

= 25.33 psi

The standard deviation is given by

Standard \, deviation =\sqrt{Variance}

Variance = K\int\limits^{30}_{20} [y-E(Y\mid x) ]^2h(y \mid x)\, dy

=K\int\limits^{30}_{20} [y-25.33]^2(10.066y^2+6291.39)\, dy

= \frac{3}{380000} \times 1047259.78 = 8.268

The standard deviation = √8.268 = 2.875.

You might be interested in
What’s the value of y?
xenn [34]

Answer:

c. 19

Step-by-step explanation:

This model is describing a function. You put in a number for x, in this case, the input of 7 on the side. You solve the equation with that x-value to get a y-value/output.

x=7

y=3x-2

y=3(7)-2

y=21-2

y=19

7 0
3 years ago
A flower bed has the shape of a rectangle 21 feet long and 9 feet wide. What is its area in square yards?
Licemer1 [7]
21 times 9 which equals 189 feet and there are 3 feet in a yard so we do 189 divided by 3 which equals 63 so the answer is 63 square yards.

Brainlist please! :)
4 0
3 years ago
Read 2 more answers
Find the volume of the cone use pi=3.14 Round to the nearest hundredth?
xenn [34]

Answer:

Volume=2616.67

Step-by-step explanation:

V=1/3pi r squared height

V=1/3(3.14)(10)squ.(25)

V=1/3(3.14)(100)(25)

V=2616.66667

V=2616.67

6 0
3 years ago
11 is what percent of 300?
BabaBlast [244]

Answer: 11 is 3.667% of 300.

Step-by-step explanation: The 3.667% of 300 is 11.001, this is the closest possible to 11.

P.D. Hope this helps!

7 0
3 years ago
Bap-fvjt-fxy aa jao sb<br>let's talk????​
zhannawk [14.2K]

answer: What's up?????

3 0
3 years ago
Read 2 more answers
Other questions:
  • How to divide 246 divided by 6?
    14·1 answer
  • Which statement is true ? Help plzzzz
    11·1 answer
  • Simplify 10:11 as a ratio
    14·2 answers
  • Which of the following statistics measures the variability of a distribution?
    9·2 answers
  • I need to find the length of AB.<br><br><br><br>HELP​
    5·2 answers
  • What is the value of the product (3 - 2i)(3+2i)?
    10·1 answer
  • Which of the following best explains the value of Sine StartFraction pi Over 3 EndFraction on the unit circle below?
    6·2 answers
  • A school has 36 fish swamps 4/6 of them's are boys how much are girls
    9·2 answers
  • What is the difference between constructing a regular hexagon and constructing an equilateral triangle?
    9·1 answer
  • A pebble is tossed into the air from the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!