The statement that best describes how an ionic compound dissolves in water is as follows: it separates into individual molecules and is an electrolyte, which is option C.
<h3>What is an ionic compound?</h3>
Ionic compound is any compound is a chemical compound composed of ions (charged atoms) held together by electrostatic forces termed ionic bonding.
Ionic compounds are electrolytes i.e. a substance when, in solution or when molten, ionizes and conducts electricity.
For example; sodium chloride (NaCl) is an ionic compound breaks down into sodium ions (Na+) and chloride ion (Cl-).
Therefore, the statement that best describes how an ionic compound dissolves in water is as follows: it separates into individual molecules and is an electrolyte.
Learn more about ionic compound at: brainly.com/question/9167977
#SPJ1
Answer:
I would expect the gas rate determined in this manner to be too low
Explanation:
A Rotameter can be designed to respond to the sensitivity of density, velocity, to measure the flow rate of liquid or gas enclosed in a tube. Liquids are denser than gas, and since the gas rate to be determined needed to respond to the velocity head alone of the rotameter so as to bring the forces in the tube equilibrium. Knowing if there is no flow, then the float would remain at the bottom, so gas has to flow at a higher rate compared to the liquid so the float would be in a similar position making it easier to measure the flowrate. This leaves the gas rate to be determined too low.
This is not a question
what are you asking
Answer:
The answer to your question is: SiCl₄
Explanation:
Data
amount of Si 1.71 g
amount of Cl 8.63 g
MW Si = 28 g
MW Cl = 35.5
Process (rule of three)
For Si For Cl
28 g of Si ------------------ 1 mol 35.5 g of Cl --------------- 1 mol
1.71g of Si --------------- x 8.63 g of Cl -------------- x
x = 1.71 x 1 / 28 = 0.06 mol x = 8.63 x 1 / 35.5 = 0.24 mol
Now, divide both results by the lowest of them.
Si = 0.06 mol / 0.06 = 1 molecule of Si Cl = 0.24 / 0.06 = 4 molecules of Cl
Finally
Si₁ Cl₄ or SiCl₄