A lot of molecules will be in 2.570 moles of H2
The temperature of a certain substance can be seen as the average speed of the atoms or molecules in that substance. In the liquid state of a substance the forces between the atoms or molecules are strong enough to keep them together, however with enough freedom to move, unlike in the solid state. If we would have a closer look at the surface of a liquid from sideways, we would see water molecules jumping out of the water and reentering it again. The lower the water temperature would be the lesser the amount of water molecules leaving the liquid phase would be. If water would be heated up and the temperature will reach 100 degrees C at normal atmospheric pressure, more water molecules would leave the water than reentering. Boiling has started. The temperature of the water remains at 100 degrees C, if the heating continues as the average speed of molecules will not increase, only the rate of molecules leaving the water will increase, until all the water in liquid state has been vapourized. The amount of heat needed to vapourize liquid water is called latent heat. Latent heat is a very important driving factor in the atmosphere and thus the weather.
Answer:
It is an amorphous solid and hence also called pseudo solid. So it flows very slowly over thousands of years. It is not visible to the n*ked eye.
<span>Ammonia (NH3) is the combination of Nitrogen and Hydrogen
elements.
=> N2 + 3H2 => 2NH3
Ammonia is basically used as a fertilizer. It is a gas composed of nitrogen and
hydrogen. It is colorless with strong odor. Here are some other uses of Ammonia
aside from fertilizer:
=> used by manufacturer to produce synthetic fiber
=> Used in metallurgical process
Ammonia can be decomposed easily and it produce hydrogen that is very
convenient in welding.
Ammonia’s boiling point is -28.03 F and freezing point is -107.8F.
</span>
Answer:
Please find the structure attached as an image
Explanation:
Based on the characteristics ending name (-ene) of the organic compound above, it belongs to the ALKENE GROUP. Alkenes are characterized by the possession of a carbon to carbon double bond (C=C) in their structure.
- But-3-ene tells us that the organic compound has four straight carbon atoms with the C=C (double bond) located on the THIRD carbon depending on if we count from right to left or vice versa.
- 2 methyl indicates that the methyl group (-CH3) is located as an attachment on the second carbon (carbon 2).
N.B: In the structure attached below, the counting is from the left to right (→).