<h3><u>Answer;</u>
</h3>
= 607.568 Torr
<h3><u>Explanation;
</u></h3>
1 in of mercury is equivalent to 25.4 Torr
Therefore;
23.92 InHg will be equal to;
23.92 × 25.4
<u>= 607.568 Torr</u>
Answer:
2
Explanation:
In two reactions energy is released.
1) C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂ + heat
It is cellular respiration reaction.It involves the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
2) 2H₂ + O₂ → 2H₂O ΔH = -486 kj/mol
The given reaction is formation of water. In this reaction oxygen and hydrogen react to form water and 486 kj/mol is also released.
The reaction in which heat is released is called exothermic reaction.
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Answer:
The specific rotation of D is 11.60° mL/g dm
Explanation:
Given that:
The path length (l) = 1 dm
Observed rotation (∝) = + 0.27°
Molarity = 0.175 M
Molar mass = 133.0 g/mol
Concentration in (g/mL) = 0.175 mol/L × 133.0 g/mol
Concentration in (g/mL) = 23.275 g/L
Since 1 L = 1000 mL
Concentration in (g/mL) = 0.023275 g/mL
The specific rotation [∝] = ∝/(1×c)
= 0.27°/( 1 dm × 0.023275 g/mL
)
= 11.60° mL/g dm
Thus, the specific rotation of D is 11.60° mL/g dm
Answer:
34.28 L ( 1.5*22.4 L)
Explanation:
Calculation of the moles of aluminum as:-
Mass = 55 g
Molar mass of aluminum = 26.981539 g/mol
The formula for the calculation of moles is shown below:
Thus,

According to the reaction:-

4 moles of aluminum react with 3 moles of oxygen gas
1 mole of aluminum react with
moles of oxygen gas
2.0384 moles of aluminum react with
moles of oxygen gas
Moles of oxygen gas = 1.5288 moles
At STP,
Pressure = 1 atm
Temperature = 273.15 K
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
1 atm × V = 1.5288 mol × 0.0821 L.atm/K.mol × 273.15 K
⇒V = 34.28 L ( 1.5*22.4 L)