Step-by-step answer:
All the problems use absolute value function |x|
|x| means the positive value of x.  That means |x| = |-x|
For example, |23| = |-23| = 23  (positive value)
In solving linear equations with absolute value functions, we generally have two solutions, for example:
|x+1| =7   mean we solve for x in
(x+1) = 7 => x=6,  (when x+1 >0)
or
-(x+1) = 7 => x=-8  (when x+1<0)
So the solution is x=6 or x=-9
Q20:
Given: a=-2, b=-3, c=2, x=2.1, y=3, z=-4.2
Evaluate -3|z| + 2 (a + y)
Solution:
Substitute values, namely
-3|z| + 2 (a + y)
= -3 |-4.2|
In solving linear equations with absolute value functions, we generally have two solutions, for example:
|x+1| =7   mean we solve for x in
(x+1) = 7 => x=6,  (when x+1 >0)
or
-(x+1) = 7 => x=-8  (when x+1<0)
So the solution is x=6 or x=-9
Q23:
|f+10|=1
when f+10 > 0 :  (f+10) = 1 => f+10 = 1 => f = 1 - 10  => f = -9 
when f+10 < 0 :  -(f+10) = 1 => -f -10 = 1 => -f = 1+10 => -f = 11  => f = -11 
The solution is therefore  f = { -9, -11 }
Q24:
| v-2 | = -5
when v-2 > 0  :  (v-2) = -5  =>  v-2 = -5  =>  v=-5+2  =>  v = -3 
when v-2 < 0  :  -(v-2) = -5   => -v +2 = -5  => -v = -5-2   =>  v = 7
The solution is therefore v = {-3, 7}
Q25:
| 4t-8 | = 20
when 4t-8 > 0 :  (4t-8) = 20  =>  4t = 20+8  =>  4t=28  =>  t=7
when 4t-8 < 0 : -(4t-8) = 20 => -4t +8 = 20 => -4t = 20-8  => -4t = 12  => t = -3
The solution is therefore t = { 7, -3 }