Answer:
32.9166667 m / s^2
Explanation:
s = 4.25km (1000m / 1km)
= 4250m
u = 20m/s
delta T = 20min (60sec / 1min)
= 1200s
Use formula s = ut + (1/2)at^2
4250m = 20m/s * 1200s + (1/2)a*1200s^2
Rearrange it to find a
a = (s-ut) / (1/2 * t^2)
a = (4250m - 20m/s*1200s) / (1/2 * 1200s^2)
a = -32.9166667 m / s^2
Answer:
The answer to your question is: vf = 30 m/s
Explanation:
Data
vo = 15 m/s
a = 3.0 m/s²
t = 5 s
vf = ?
Formula
vf = vo + at
Substitution
vf = 15 + (3)(5)
vf = 15 + 15
vf = 30 m/s
250/4= 62.5 mph
to find the mph of a car, you need to divide the number of miles traveled by the hours that it took to travel that many miles
Answer:
The initial velocity of the ball is 28.714 m/s
Explanation:
Given;
time of flight of the ball, t = 2.93 s
acceleration due to gravity, g = 9.8 m/s²
initial velocity of the ball, u = ?
The initial velocity of the ball is given by;
v = u + (-g)t
where;
v is the final speed of the ball at the given time, = 0
g is negative because of upward motion
0 = u -gt
u = gt
u = (9.8 x 2.93)
u = 28.714 m/s
Therefore, the initial velocity of the ball is 28.714 m/s