The correct answer is Raoul Hausmann. He was an Austrian
artist and writer. And he was a forefather and dominant figure of the Dada movement
in Berlin, who was
known particularly for his ironic photomontages and
his provocative writing on art. One of the important
figures there also includes the experimental photographic collages, sound
poetry and institutional reviews that has a profound influence on the European
Avant-Garde in the aftereffects of World War I.
Answer:
C)It would require more energy to change solid water into liquid water because there are more molecules in this larger piece of ice.
Answer:
v = 1.28 m/s
Explanation:
Given that,
Maximum compression of the spring, 
Spring constant, k = 800 N/m
Mass of the block, m = 0.2 kg
To find,
The velocity of the block when it first reaches a height of 0.1 m above the ground on the ramp.
Solution,
When the block is bounced back up the ramp, the total energy of the system remains conserved. Let v is the velocity of the block such that,
Initial energy = Final energy

Substituting all the values in above equation,

v = 1.28 m/s
Therefore the velocity of block when it first reaches a height of 0.1 m above the ground on the ramp is 1.28 m/s.
Answer and Explanation: Kinetic energy is related to movement: it is the energy an object possesses during the movement. it is calculated as:

For the object thrown in the air:
![K=\frac{1}{2}.2.[v(t)]^{2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B1%7D%7B2%7D.2.%5Bv%28t%29%5D%5E%7B2%7D)


Kinetic energy of the object as a function of time: 
Potential energy is the energy an object possesses due to its position in relation to other objects. It is calculated as:

For the object thrown in the air:



Potential energy as function of time: 
Total kinetic and potential energy, also known as mechanical energy is
TME =
+ (
)
TME = 1752
The expression shows that total energy of an object thrown in the air is constant and independent of time.