1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Molodets [167]
2 years ago
10

Two light bulbs are 2.0 m apart. From what distance can these light bulbs be marginally resolved by a small telescope with a 4.5

0 cm. Assume that the lens is limited only by diffraction and λ = 600 nm
Physics
1 answer:
andrezito [222]2 years ago
3 0

Answer:

R = 1.2295 10⁵  m

Explanation:

After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body

            θ = 1.22 λ / D

where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture

             

how angles are measured in radians

          θ = y / R

where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens

            \frac{y}{R} = 1.22 \frac{ \lambda}{D}

            R = \frac{ y \ D}{1.22 \lambda}

let's calculate

            R = \frac{ 2 \ 0.045}{ 1.22 \ 600 \ 10^{-9}}

            R = 1.2295 10⁵  m

You might be interested in
Why does the Sun appear so big, bright, and hot if it is<br> only an average sized star?
Elena L [17]

Answer:

The Sun looks bigger than other stars because it is so much closer to the Earth. The further away an object is, the smaller it appears, even if it is very big.

Explanation:

However, compared to other stars, our Sun is only a medium-sized star, meaning that some stars are much larger than the Sun and some are much smaller.

3 0
3 years ago
Read 2 more answers
Which is an example of a wedge?<br> a. bowl<br> b. spoon<br> c. fork<br> d. knife
elixir [45]
The answer is d.... Knife.

Hope this helped :)
3 0
3 years ago
A car with a mass of 1380 Kg is traveling at 23 m/s to the north. A truck with a mass of 1625 Kg is traveling at 26 m/s to the s
trasher [3.6K]

Answer: -3.49 m/s (to the south)

Explanation:

This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum p_{i} must be equal to the final momentum p_{f}, and taking into account this is aninelastic collision:

Before the collision:

p_{i}=mV_{o}+MU_{o} (1)

After the collision:

p_{f}=(m+M)V_{f} (2)

Where:

m=1380 kg is the mass of the car

V_{o}=23 m/s is the velocity of the car, directed to the north

M=1625 kg is the mass of the truck

U_{o}=-26 m/s is the velocity of the truck, directed to the south

V_{f} is the final velocity of both the car and the truck

p_{i}=p_{f} (3)

mV_{o}+MU_{o}=(m+M)V_{f} (4)

Isolating V_{f}:

V_{f}=\frac{mV_{o}+MU_{o}}{m+M} (5)

V_{f}=\frac{(1380 kg)(23 m/s)+(1625 kg)(-26 m/s)}{1380 kg+1625 kg} (6)

Finally:

V_{f}=-3.49 m/s The negative sign indicates the direction of the velocity is to the south

8 0
3 years ago
Arrange the examples in order, starting with the object that has the least amount of energy. In each case, assume there’s no fri
Artemon [7]
First example: book, m= 0.75 kg, h=1.5 m, g= 9.8 m/s², it has only potential energy Ep,

Ep=m*g*h=0.75*9.8*1.5=11.025 J

Second example: brick, m=2.5 kg, v=10 m/s, h=4 m, it has potential energy Ep and kinetic energy Ek,

E=Ep+Ek=m*g*h + (1/2)*m*v²=98 J + 125 J= 223 J

Third example: ball, m=0.25 kg, v= 10 m/s, it has only kinetic energy Ek

Ek=(1/2)*m*v²=12.5 J.

Fourth example: stone, m=0.7 kg, h=7 m, it has only potential energy Ep,

Ep=m*g*h=0.7*9.8*7=48.02 J

The order of examples starting with the lowest energy:

1. book, 2. ball, 3. stone, 4. brick 


4 0
2 years ago
1. A cyclist accelerates from 0 m/s to 9 m/s in 3 seconds. What is his<br>acceleration?​
Lapatulllka [165]

The cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².

Answer:

Explanation:

Acceleration exerted by an object is the measure of change in speed or velocity of that object with respect to time. So the initial and final velocities play a major role in determining the acceleration of the cyclist. As here the initial velocity of the cyclist is the speed at rest and that is given as 0 m/s. Then after 3 seconds, the velocity of the cyclist changes to 9 m/s.

Then acceleration = change in velocity/Time.

Acceleration = \frac{Change in velocity}{Time taken}

Acceleration = (9-0)/3=9/3=3 m/s².

So the cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².

3 0
3 years ago
Other questions:
  • A skydiver is in free fall. What is the only force acting upon the skydiver.
    12·1 answer
  • A glider of mass 0.240 kg is on a frictionless, horizontal track, attached to a horizontal spring of force constant 6.00 N/m. In
    14·1 answer
  • Please help in physics
    5·1 answer
  • What is the tiny particle that is the fundamental building block of a substance
    5·1 answer
  • Spaceship 1 and Spaceship 2 have equal masses of 300 kg. Spaceship 1 has
    15·1 answer
  • Xenon has an enthalpy of vaporization of 12.6 kJ/mol and a vapor pressure of 1.00 atm at –108.0 °C. What is the vapor pressure o
    6·1 answer
  • At its nearest, Venus comes within about 41 million km of Earth. How distant is it at its farthest?
    8·2 answers
  • 1. _______ magma causes powerful and explosive volcanic eruptions. A. Andesitic B. Rhyolitic C. Basaltic D. Composite
    13·2 answers
  • What does cardiorespiratory fitness measure?
    15·1 answer
  • YALL HELP ME QUICK IN 10 MINS<br> WITH WORKING OUT
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!