Answer:
The distance traveled during its acceleration, d = 214.38 m
Explanation:
Given,
The object's acceleration, a = -6.8 m/s²
The initial speed of the object, u = 54 m/s
The final speed of the object, v = 0
The acceleration of the object is given by the formula,
a = (v - u) / t m/s²
∴ t = (v - u) / a
= (0 - 54) / (-6.8)
= 7.94 s
The average velocity of the object,
V = (54 + 0)/2
= 27 m/s
The displacement of the object,
d = V x t meter
= 27 x 7.94
= 214.38 m
Hence, the distance the object traveled during that acceleration is, a = 214.38 m
At point x = 0, the particle accelerates. Since there will be change of velocity at that point. The the force of the particle will change from negative sign to positive sign according to the given figure, we can therefore conclude that the particle will have a turning point at point x = 0.
Given that a 2.0 kg particle moving along the z-axis experiences the force shown in a given figure.
Force is the product of mass and acceleration. While acceleration is the rate of change of velocity. Both the force and acceleration are vector quantities. They have both magnitude and direction.
If the particle's velocity is 3.0 m/s at x = 0 m, that mean that the particle experience change of velocity at point x = 0. Since the the force of the particle will change from negative sign to positive sign according to the given figure, we can therefore conclude that the particle will have a turning point at point x = 0.
Learn more here: brainly.com/question/20366032
Answer:
what I don't know show a question mark me as brainleast
Answer:
The velocity of the blades is 88.185 m/s.
Explanation:
Given;
length of the blade, r = 80 m
angular speed, ω = 1 rev per 5.7 seconds
The velocity of the blades is calculated by applying the following circular motion equation that relates linear velocity (V) and angular speed (ω);

Therefore, the velocity of the blades is 88.185 m/s.
Answer:
Because it has more mass
Explanation:
To understand this, think about the equation of kinetic energy
KE =
m 
Kinetic energy depends on both the velocity (v) as well as the mass (m).
Because a lorry is bigger and heavier than a car, it will have more mass. With more mass, at the same velocity the lorry with have more kinetic energy.