g Generally the accepted value of acceleration due to gravity is 9.801 
as per the question the acceleration due to gravity is found to be 9.42
in an experiment performed.
the difference between the ideal and observed value is 0.381.
hence the error is -
=3.88735 percent
the error is not so high,so it can be accepted.
now we have to know why this occurs-the equation of time period of the simple pendulum is give as-![T=2\pi\sqrt[2]{l/g}](https://tex.z-dn.net/?f=T%3D2%5Cpi%5Csqrt%5B2%5D%7Bl%2Fg%7D)

As the experiment is done under air resistance,so it will affect to the time period.hence the time period will be more which in turn decreases the value of g.
if this experiment is done in a environment of zero air resistance,we will get the value of g which must be approximately equal to 9.801 
Answer:
-4.0 N
Explanation:
Since the force of friction is the only force acting on the box, according to Newton's second law its magnitude must be equal to the product between mass (m) and acceleration (a):
(1)
We can find the mass of the box from its weight: in fact, since the weight is W = 50.0 N, its mass will be

And we can fidn the acceleration by using the formula:

where
v = 0 is the final velocity
u = 1.75 m/s is the initial velocity
t = 2.25 s is the time the box needs to stop
Substituting, we find

(the acceleration is negative since it is opposite to the motion, so it is a deceleration)
Therefore, substituting into eq.(1) we find the force of friction:

Where the negative sign means the direction of the force is opposite to the motion of the box.
Answer:
1,373.4 N
Explanation:
The mass of the table acts at the centre in addition to the books since that is the centre of gravity of the table.
Mass of books will be 10kg+20kg+30kg=60 kg
Total mass of table and books will be 500kg+60kg=560 kg
This mass is evenly distributed into the four legs hence 560kg/4 legs=140 kg per leg
Force is product of mass and acceleration due to gravity hence F=gm
Taking g as 9.81 m/s2 then
F=140*9.81=1,373.4 N
Therefore, rhe normal force is equivalent to 1,373.4 N