The answer is B
As seen on the graph, the bus maintains a 9m/s speed for a majority of the trip to school.
Answer:
v =
m/s
Explanation:
The position vector r of the bug with linear velocity v and angular velocity ω in the laboratory frame is given by:

The velocity vector v is the first derivative of the position vector r with respect to time:
![\overrightarrow{v}=[vcos(\omega t)-\omega vtsin(\omega t)]\hat{x}+[vsin(\omega t)+\omega vtcos(\omega t)]\hat{y}](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%5Bvcos%28%5Comega%20t%29-%5Comega%20vtsin%28%5Comega%20t%29%5D%5Chat%7Bx%7D%2B%5Bvsin%28%5Comega%20t%29%2B%5Comega%20vtcos%28%5Comega%20t%29%5D%5Chat%7By%7D)
The given values are:


Sun-earth-moon in a straight line. Earth in the 'middle'.
Answer: the particles are more orderly in region 1
Explanation: region 1 is when the substance is a solid and as it is heated the particles move further apart and have more kinetic energy.
Answer:
Explanation:
Horizontal displacement
x = 120 t
Vertical position
y = 3610 - 4.9 t²
y = 0 for the ground
0 = 3610 - 4.9 t²
t = 27.14 s
This is the time it will take to reach the ground .
During this period , horizontal displacement
x = 120 x 27.14 m
= 3256.8 m
So packet should be released 3256.8 m before the target.