The answer is:
B. <span>X: Work is done to the system and temperature increases.
Y: Work is done by the system and temperature decreases.</span>
Answer:
1) p₀ = 45000 N / s
, p₀ '= 1800
, b) I = -45000 N s
, I = 1800 Ns
Explanation:
Impulse equals the change in momentum
I = Δp
1) the initial moment of the car
p₀ = M v
p₀ = 1500 30
p₀ = 45000 N / s
the change at the moment is
Δp = 45000
because the end the car is stopped
moment of the person
P₀ ’= m v
p₀ '= 60 30
p₀ '= 1800
D₀ '= 1800
2) of the momentum change impulse ratio
car
I = Δp
I = -45000 N s
person
I = Δpo '
I = 1800 Ns
3) the object that give the momentum to stop the wall motoring
The person is stopped by the impulse given by the car
a) This area is the one that absorbs most of the vehicle impulse
be) If using a safety painter, the time during which the greater force will act, therefore the lessons decrease
c) The air bag helps reduction in the speed of the person relatively quickly.
I pretty sure that 3 is b and 4 is A and 5 I need a full picture
C. The opportunity cost of a student who is staying up all night to study for an exam that he has to take in the early morning is sleep or rest.
<h3>
What is law of opportunity cost?</h3>
The law of increasing opportunity cost is an economic principle that describes how opportunity costs increase as resources are applied.
As the student gives up his sleep or night rest in the place of his exam preparation, we say that the opportunity cost is the sleep or rest.
Thus, the opportunity cost of a student who is staying up all night to study for an exam that he has to take in the early morning is sleep or rest.
Learn more about opportunity cost here: brainly.com/question/8846809
#SPJ1
Answer:
Einstein extended the rules of Newton for high speeds. For applications of mechanics at low speeds, Newtonian ideas are almost equal to reality. That is the reason we use Newtonian mechanics in practice at low speeds.
Explanation:
<em>But on a conceptual level, Einstein did prove Newtonian ideas quite wrong in some cases, e.g. the relativity of simultaneity. But again, in calculations, Newtonian ideas give pretty close to correct answer in low-speed regimes. So, the numerical validity of Newtonian laws in those regimes is something that no one can ever prove completely wrong - because they have been proven correct experimentally to a good approximation.</em>