Water can only dissolve inorganic compounds is false
Answer:
1. Increase in the temperature of the water
2. Increasing the surface area of the lithium
Explanation:
1. Increase in the temperature of the water
The activation energy for the lithium water reaction is +161 kJ/mol while the activation energy for the sodium is +109 kJ/mol, hence for increased reaction rate, the water temperature will be raised to enable more lithium atoms enter into reaction with the water molecules as their energy is increased lowering the activation energy required for the reaction.
2. Increasing the surface area of the lithium
As the lithium floats on the water, due to its low temperature and the heat evolved from the reaction of lithium with the cold water is below the melting point of lithium, the reaction rate can be increased by increasing the surface area of lithium sample by grinding so as to increase the number of lithium water reaction sites.
Answer: The geologic time scale is the “calendar” for events in Earth history. It subdivides all time into named units of abstract time called—in descending order of duration—eons, eras, periods, epochs, and ages.
Explanation: I learned about it the other day
<u>Answer:</u>
The disposal method used for high-level nuclear waste Concentrate and contain
<u>Explanation:</u>
High intensity nuclear waste is an underlying issue for the world where the generated nuclear waste is one side very hazardous and on other side would help us in many viable processes but the negative sides of a consequence just outnumber the positive sides of the situation.
Concentrate and contain is a waste disposable method which enables the nuclear waste to be preserved and isolated and later be used when the time comes. Other methods would not be suggested because they could cause a huge amount of dangerous radioactivity in oceans which is often harmful for people.
ΔG deg will be negative above 7.27e+3 K.
<u>Explanation:</u>
- The ΔG deg with the temperature can be found using the formula and the formula is given below
- ΔG deg = ΔH deg - T ΔS deg
- Given data, ΔH deg = 181kJ and ΔSdeg=24.9J/K
- -T ΔS deg will be always negative and ΔG deg = ΔH deg will be positive and ΔG deg will be negative at relatively high temperatures and positive at relatively low temperatures
- solving the equation and substitute ΔGdeg=0
- ΔGdeg = ΔHdeg - T ΔSdeg
- T= ΔHdeg/ΔSdeg
- T=181 kJ / 2.49e-2 kJK-1
- By simplification we get
- T=7.27 × 10^3 K.
- Therefore, Go will be negative above 7.27 × 10^3 K
- Since ΔG deg = -RT lnK, when ΔGdeg < 0, K > 1 so the reaction will have K > 1 above 7.27 × 10^3 K.
- ΔG deg will be negative above 7.27e+3 K.
<u></u>
<u />