Given :
A compound has a molar mass of 129 g/mol .
Empirical formula of compound is C₂H₅N .
To Find :
The molecular formula of the compound.
Solution :
Empirical mass of compound :

Now, n-factor is :

Multiplying each atom in the formula by 3 , we get :
Molecular Formula, C₆H₁₅N₃
3.
protium (A = 1), deuterium (A = 2), and tritium (A = 3).
The volume of oxygen at STP required would be 252.0 mL.
<h3>Stoichiometic problem</h3>
The equation for the complete combustion of C2H2 is as below:

The mole ratio of C2H2 to O2 is 2:5.
1 mole of a gas at STP is 22.4 L.
At STP, 100.50 mL of C2H2 will be:
100.50 x 1/22400 = 0.0045 mole
Equivalent mole of O2 according to the balanced equation = 5/2 x 0.0045 = 0.01125 moles
0.01125 moles of O2 at STP = 0.01125 x 22400 = 252.0 mL
Thus, 252.0 mL of O2 gas will be required at STP.
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1
Answer:
for volume only liters can be used
Explanation: