Get on mathpapa is shows you the answer and how to explain it
<u>Answer:</u> The complete molecular, ionic, and net ionic equations are given below. The spectator ions are sodium and nitrate ions.
<u>Explanation:</u>
The ionic equation is defined as the equation in which all the substances that are strong electrolytes present in an aqueous state and are represented in the form of ions.
The net ionic equation is defined as the equations in which spectator ions are not included.
Spectator ions are the ones that are present equally on the reactant and product sides. They do not participate in the reaction.
The balanced molecular equation for the reaction of lead (II) nitrate and sodium sulfide follows:

The ionic equation follows:

As sodium and nitrate ions are present on both sides of the reaction. Thus, they are considered spectator ions.
The net ionic equation follows:

Answer:
there are three significant digits.
Explanation:
Thus, 21.8, 0.283 and 567 all have three significant digits. 2. Zeros appearing between non-zero digits are significant. Thus, 505 and 0.206 have three significant digits, while 50,005 has five significant digits. (from google)
Molarity of Ag+ is less than the molar solubility thus ppt will not occur.
Balanced reaction-:
<h3>2AgNO3(aq)+K2CrO4(aq)→Ag2CrO4(s)+2KNO3(aq)</h3>
Moles of AgNO3=mass(g)molar mass (g/mol) =2.7×10−5g / 169.86 gmol
=1.589⋅10^−7 mol
Molarity of Ag+=moles of solute(L)=1.589⋅10−7 mol0.015 L=1.059⋅10−5M
Ksp of Ag2CrO4
=[Ag+]2[CrO42−]
1.2⋅10−12=[2s]2[s]
4s3=1.2⋅10−12
s=6.69⋅10−5 M
Molarity of Ag+ is less than the molar solubility thus ppt will not occur.
<h3>What is the molarity calculation formula?</h3>
The volume of solvent required to dissolve the provided solute is multiplied by the ratio of the moles of the solute whose molarity has to be computed. (M=frac{n}{V}) The molality of the solution that needs to be computed in this case is M. n is the solute's molecular weight in moles.
Learn more about Molarity:
brainly.com/question/8732513
#SPJ4
The answer is for this question is c