1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
3 years ago
13

A pump, submerged at the bottom of a well that is 35 m deep, is used to pump water uphill to a house that is 50 m above the top

of the well. The density of water is 1,000 kg/m3. Neglect the effects of friction, turbulence, and viscosity. (a) Residents of the house use 0.35 m3 of water per day. The day’s pumping is completed in 2 hours during the day. i. Calculate the minimum work required to pump the water used per day ii. Calculate the minimum power rating of the pump. (b) In the well, the water flows at 0.50 m/s and the pipe has a diameter of 3.0 cm. At the house the diameter of the pipe is 1.25 cm. i. Calculate the flow velocity at the house when a faucet in the house is open. ii. Calculate the pressure at the well when the faucet in the house is open.
Physics
1 answer:
seropon [69]3 years ago
8 0

Answer:

(a) i. The minimum work required to pump the water used per day is

291.85 kJ

ii. The minimum power rating of the pump is 40.53 Watts

(b) i. The flow velocity at the house when a faucet in the house is open where the diameter of the pipe is 1.25 cm is 2.87 m/s

ii. The pressure at the well when the faucet in the house is open is

837.843 kPa.

Explanation:

We note the variables of the question as follows;

Depth of well = 35 m deep

Height of house above the top of the well = 50 m

Density of water = 1000 kg/m³

Volume of water pumped per day = 0.35 m³

Duration of pumping of water per day = 2 hours

(a) i. We note that the energy required to pump the water is equivalent to the potential energy gained by the water at the house. That is

Energy to pump water = Potential Energy = m·g·h

Where:

m = Mass of the water

g = Acceleration due to gravity

h = Height of the house above the bottom of the well

Therefore,

Mass of the water = Density of the water × Volume of water pumped

= 1000 kg/m³ × 0.35 m³ = 350 kg

Therefore P.E. = 350 × 9.81 × (50 + 35) = 291847.5 J

Work done = Energy = 291847.5 J

Minimum work required to pump the water used per day = 291847.5 J

= 291.85 kJ

ii. Power is the rate at which work is done.

Power = \frac{Work}{Time}

Since the time available to pump the water each day is 2 hours or 7200 seconds, therefore we have

Power  = 291847.5 J/ 7200 s = 40.53 J/s or 40.53 Watts

(b)

i. If the velocity in the 3.0 cm pipe is 0.5 m/s

Then we have the flow-rate as Q = v₁ ×A₁

Where:

v₁ = Velocity of flow in the 3.0 cm pipe = 0.

A₁ = Cross sectional area of 3.0 cm pipe

As the flow rate will be constant for continuity, then the flow-rate at the faucet will also be equal to Q

That is Q = 0.5 m/s × π × (0.03 m)²/4 =  3.5 × 10⁻⁴ m³/s

Therefore the velocity at the faucet will be given by

Q = v₂ × A₂

∴ v₂ = Q/A₂

Where:

v₂ = velocity at the house the where the diameter of the pipe is 1.25 cm

A₂ = Cross sectional area of 1.25 cm pipe = 1.23 × 10⁻⁴ m²

Therefore v₂ = (3.5 × 10⁻⁴ m³/s)/(1.23 × 10⁻⁴ m²) = 2.87 m/s

ii. The pressure at the well is given by Bernoulli's equation,

P₁ + 1/2·ρ·v₁² + ρ·g·h₁ = P₂ + 1/2·ρ·v₂² + ρ·g·h₂

If h₁ is taken as the reference point, then h₁ = 0 m

Also since P₂ is opened to the atmosphere, we take P₂ = 0

Therefore

P₁ + 1/2·ρ·v₁² + 0 = 0 + 1/2·ρ·v₂² + ρ·g·h₂

P₁ + 1/2·ρ·v₁²  =  1/2·ρ·v₂² + ρ·g·h₂

P₁ =  1/2·ρ·v₂² + ρ·g·h₂ - 1/2·ρ·v₁²  

= 1/2 × 1000 × 2.87² + 1000 × 9.81 × 85 - 1/2 × 1000 × 0.5²

= 837843.45 Pa = 837.843 kPa

You might be interested in
The electric force between two charged balloons is 0.12 newtons. If the distance between the two balloons is halved, what will b
marshall27 [118]

Answer:

The answer is D, I just took the test

Explanation:

5 0
3 years ago
If a 10.0 kg object is on a surface that is inclined 30o and the coefficient of static friction is 0.65, what is the force of st
Alexxandr [17]
  fraction equation is<span>
                     F =µR 
 F=friction,µ=coefficient , R=reaction = mg 

use same equation for b part, but the reaction is no longer mg because the plain is now inclined. Draw a forces diagram and you will see that the reaction force can be calculated from the weight of the object and inclination of the plain using trigonometry.</span>
6 0
3 years ago
A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 4.7 1010 m (inside the orbit
Lubov Fominskaja [6]

Answer:

58515.9 m/s

Explanation:

We are given that

d_1=4.7\times 10^{10} m

v_i=9.5\times 10^4 m/s

d_2=6\times 10^{12} m

We have to find the speed (vf).

Work done by surrounding particles=W=0 Therefore, initial energy is equal to final energy.

K_i+U_i=K_f+U_f

\frac{1}{2}mv^2_i-\frac{GmM}{d_1}=\frac{1}{2}mv^2_f-\frac{GmM}{d_2}

\frac{1}{2}v^2_i-\frac{GM}{d_1}+\frac{GM}{d_2}=\frac{1}{2}v^2_f

v^2_f=2(\frac{1}{2}v^2_i-\frac{GM}{d_1}+\frac{GM}{d_2})

v_f=\sqrt{2(\frac{1}{2}v^2_i-\frac{GM}{d_1}+\frac{GM}{d_2})}

Using the formula

v_f=\sqrt{v^2_i+2GM(\frac{1}{d_2}-\frac{1}{d_1})}

v_f=\sqrt{(9.5\times 10^4)^2+2\times 6.7\times 10^{-11}\times 1.98\times 10^{30}(\frac{1}{6\times 10^{12}}-\frac{1}{4.7\times 10^{10})}

Where mass of sun=M=1.98\times 10^{30} kg

G=6.7\times 10^{-11}

v_f=58515.9 m/s

4 0
3 years ago
Can anyone help?6th question.free brainliest answer...
DIA [1.3K]

There's a crest and a trough in each complete wave.  So the question is describing 10 complete waves.

After that, the question becomes somewhat murky.  It goes on to say "its time period is 0.2 seconds".  

-- The "time period" of a wave is usually defined as the time for <u><em>one</em></u> complete wave.  If that's what the phrase means, then ...

Frequency = ( 1/0.2sec )

<em>Frequency = 5 Hz.</em>

<em>= = = = = = = = = =</em>

<u>BUT</u> ... Is the question awkwardly trying to tell us that the <u><em>10 waves</em></u> take 0.2 seconds ?  If that's what it's saying, then ...

Frequency = (10) / (0.2 sec)

<em>Frequency = 50 Hz .</em>

6 0
3 years ago
A 17.0 resistor and a 6.0 resistor are connected in series with a battery. The potential difference across the 6.0 resistor is m
tia_tia [17]

Answer:

V= 57.5 V

Explanation:

  • If the resistors are in the linear zone of operation, the potential difference across them, must obey Ohm's law:

        V = I*R

  • For the 6.0 Ω resistor, if the potential difference across it is 15 V, we can find the current flowing through it as follows:

       I = \frac{V}{R} = \frac{15 V}{6.0 \Omega} = 2.5 A

  • In a series circuit, the current is the same at any point of it, so the current through the battery is I = 2.5 A
  • The equivalent resistance of a series circuit is just the sum of the resistances, so, in this case, we can write the following equation:

      R_{eq} = R_{1} +R_{2} = 17.0 \Omega + 6.0 \Omega = 23.0 \Omega

  • Applying Ohm's Law to the equivalent resistance, we can find the potential difference through it, that must be equal to the potential difference across the battery, as follows:

        V = I* R_{eq}  = 2.5 A * 23.0 \Omega = 57.5 V

8 0
3 years ago
Other questions:
  • Suppose that a worker in Freedonia can produce either 6 units of corn or 2 units of wheat per year, and a worker in Sylvania can
    10·1 answer
  • What are the units for the spring constant, k? A. newton meters B. newton seconds C. newtons/meter D. newtons/second E. newtons/
    10·2 answers
  • The rhinestones in costume jewelry are glass with index of refraction 1.50. to make them more reflective, they are often coated
    15·1 answer
  • An airplane travels at 300 mi/h south for 2.00 h and then at 250 mi/h north for 750 miles. What is the average speed for the tri
    11·1 answer
  • A person pushing a horizontal, uniformly loaded, 25.30 kg wheelbarrow of length L is attempting to get it over a step of height
    7·1 answer
  • What is her velocity
    15·1 answer
  • How each graph represents the information.
    15·1 answer
  • How many layers of smooth muscle help with churning food in the stomach? a. one b. two c. three d. four
    7·2 answers
  • An inflatable backyard swimming pool is being filled from a garden hose with a flowrate of 0.12 gal/s. (a) If the pool is 8 ft i
    6·2 answers
  • The Displacement is 5m. We found that using the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!