Answer:
Downwards
Explanation:
Using Fleming's right hand rule, where the middle finger represents the negative charge moving in the south to north direction, the fore finger represents the magnetic field which points in the east to west direction.
If we are to follow this orientation and place the thumb, middle finger and fore-finger at right angles to each other, the thumb represents the direction of the magnetic force on the charge.
In this case, the magnetic force points downwards after setting the other orientations of the magnetic field and the negative charge's direction.
The question is missing a diagram of the ray reflection. I attached a diagram which comes from a similar question in the answer section. The full question should be as follows:
Two plane mirrors intersect at right angles. A laser beam strikes the first of them at a point d = 10.0cmfrom their point of intersection, as shown in the figure. For what angle of incidence at the first mirror will this ray strike the midpoint of the second mirror (which is s=29.0cm long) after reflecting from the first mirror?
Answer:
34.6°
Explanation:
To strike the midpoint of the second mirror, the ray light will have to travel half of the distance vertically
i.e. 29/2 = 14.5
We can solve this through trigonometry.
Let the angle between the ray and the vertical plane mirror is known as α
tan α = 10/14.5
α =
= 34.6°
The angle of incidence is the angle between the ray and the normal line of the mirror.
Let angle of incidence of first mirror be β
β = α = 34.6
The easiest way to explain it is roughly identical to the way that your teacher explained it in class. If there were any easier way ... like writing it here in a few paragraphs ... then that's what the teacher would have done. You would have been given the easy explanation on the first day of class, printed on one sheet of paper, and you would have had the rest of the year to practice it and get really good at it.
If the class spent a month teaching it, then that's about how long it takes. Sorry.
v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"] ;
and solve for "v".
______________________________________________________
Explanation:
_____________________________________________________
The formula is: KE = (½) * (m) * (v²) ;
_____________________________________
"Kinetic energy" = (½) * (mass) * (velocity , "squared")
________________________________________________
Note: Velocity is similar to speed, in that velocity means "speed and direction"; however, if you "square" a negative number, you will get a "positive"; since: a "negative" multiplied by a "negative" equals a "positive".
____________________________________________
So, we have the formula:
___________________________________
KE = (½) * (m) * (v²) ; to solve for "(v)" ; velocity, which is very similar to the "speed";
___________________________________________________
we arrange the formula ;
__________________________________________________
(KE) = (½) * (m) * (v²) ; ↔ (½)*(m)* (v²) = (KE) ;
___________________________________________________
→ We have: (½)*(m)* (v²) = (KE) ; we isolate, "m" (mass) on one side of the equation:
______________________________________________________
→ We divide each side of the equation by: "[(½)* (m)]" ;
___________________________________________________
→ [ (½)*(m)*(v²) ] / [(½)* (m)] = (KE) / [(½)* (m)]<span> ;
</span>______________________________________________________
to get:
______________________________________________________
→ v² = (KE) / [(½)* (m)]
→ v² = 2 KE / m
_______________________________________________________
Take the "square root" of each side of the equation ;
_______________________________________________________
→ √ (v²) = √ { 2*(KE) ] / m }
________________________________________________________
→ v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"];
and solve for "v".
______________________________________________________
Answer:
Option (D)
Explanation:
Terrestrial planets refers to those four planets that are nearest to the sun and that lies within the asteroid belt. These planets are mainly composed of rocks or other metal objects that have a hard and resistant surface on it. They have a metal core that is molten (liquid) in nature, and atmosphere is relatively less dense, and also various geological features are present on it like the crater, volcanoes which can be observed with the help of satellites. The average densities of these planets is about four times the density of water. For example, the density of water is 1 g/cm³, whereas the density of earth is 5.5 g/cm³.
Thus, the correct answer is option (D).