Answer:
v = 315 m/s
Explanation:
given,
length of the string = 64.3 cm
frequency at fundamental mode = 245 Hz
speed of sound = 345 m/s
speed of the transverse waves = ?
here
wavelength = twice length of string
λ = 2 L
λ = 2 × 64.3
λ = 128.6 cm = 1.286 m
using formula
v = ν λ
v = 245 × 1.286
v = 315.07 m/s
Hence, the speed of the transverse wave on the string will be equal to v = 315 m/s
Explanation:
The given data is as follows.
F = 
q = 
v = 385 m/s
= 0.876
Now, we will calculate the magnitude of magnetic field as follows.
B = 
= 
=
T
= 10.65 T
Thus, we can conclude that magnitude of the magnetic field is 10.65 T.
Answer:
a force that is able to act at a distance
Explanation:
:)
Answer:
Impedance = 93.75 ohms
Current = 1.81 A
Explanation:
Resistance = R = 80 ohms
Inductance = L = 0.2 H
Inductive reactance = XL =
= ωL = (2πf) L
= 2 (3.14) (60)(0.2) = 75.398 Ohms
Capacitive reactance = 1 / ωC = 1/(2πf)C = 1 / [(2π)(60)(0.1 × 10⁻3)]
= 26.526 Ohms
Impedance = Z =
=
= 93.747 ohms
Voltage =
× 120 = 169.7056 V
Current = I = V ÷ R = (169.7056) ÷ 93,747 = 1.81 A
The first law is about force or push and pull