The price the model used or new if you have a leased car if you damage it you got to pay
Answer:
$81,020
Explanation:
The cost of the asset includes the cost of purchase less any given discount or tax returns and the addition of other cost incurred in making the asset available for use.
As such, the cost of the machine
= $77,000 - (5% * $77,000) + $2,000 + $4,520 + $1,350
= $81,020
The routine maintenance cost is not a part of the asset but an expense in p/l.
Answer: A perfectly inelastic supply curve means that<u><em> the quantity supplied is completely fixed.</em></u>
Perfectly inelastic supply states that supply is completely fixed. Therefore it is not affected by the change in price level.
<u><em>Therefore, the correct option in this case is (e)</em></u>
Answer:
Yes.
Explanation:
Given that,
Price of low-quality apples = $1 per pound
Price of high-quality apples = $4 per pound
Marginal utility of low-quality apples = 3 utils
Marginal utility of high-quality apples = 12 utils
Equimarginal:
(Marginal utility of low quality apples ÷ Price per apple) = (Marginal utility of high quality apples ÷ Price per apples)
(3 utils ÷ $1) = (12 utils ÷ $4)
3 = 3
Yes, Timmy is maximizing his utility as his equimarginal utility is same for both the goods as shown above.
Answer:
10%
Explanation:
Since the bond is selling at a discount, it means that the coupon rate is blow the market rate, so the actual rate must be higher. Since there is only one option with an interest rate above 9%, we must check to see if it works.
10% yearly interest rate = 5% semiannual interest rate
we must determine the PV of the 20 coupons paid and the face value at maturity.
to calculate the PV of the 20 coupons ($45 each) we can use an excel spreadsheet and the NPV function with a 5% discount rate: PV of the coupons = $560.80
the PV of the face value in 10 years = $1,000 / 1.05²⁰ = $376.89
the present value of the coupons and the bond at maturity = $560.80 + $376.89 = $937.69. The PV using a 5% semiannual rate is very similar to $937.75, and since the question asked us to round up to the nearest whole percent, we can assume it is correct.