Answer:
,
, ![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
Explanation:
Let suppose that fluid is incompressible and diffuser works at steady state. A diffuser reduces velocity at the expense of pressure, which can be modelled by using the Principle of Mass Conservation:




The following relation are found:

The new relationship is determined by means of linear interpolation:


After some algebraic manipulation, the following for the velocity as a function of position is obtained hereafter:


![v (x) = v_{in}\cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}}-1 \right)\cdot x \right]^{-1}](https://tex.z-dn.net/?f=v%20%28x%29%20%3D%20v_%7Bin%7D%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%5Ccdot%20x%20%5Cright%5D%5E%7B-1%7D)
The acceleration can be calculated by using the following derivative:

The derivative of the velocity in terms of position is:
![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
The expression for acceleration is derived by replacing each variable and simplifying the resultant formula.
Answer:
B. Hybrid
Explanation:
A hybrid desing implicate combining two different elements/methods, such a hybrid car, which works using both mechanic and electric energy.
Answer:
Detailed solution is attached below in three simple steps the problem is solved.
Answer:
Explanation:
Static electricity is the result of an imbalance between negative and positive charges in an object. These charges can build up on the surface of an object until they find a way to be released or discharged.