Answer:
Explanation:
The pressures given are relative
p1 = 2000 psi
P1 = 2014 psi = 13.9 MPa
p2 = 4 psi
P2 = 18.6 psi = 128 kPa
Values are taken from the steam pressure-enthalpy diagram
h2 = 2500 kJ/kg
If the output of the turbine has a quality of 85%:
t2 = 106 C
I consider the expansion in the turbine to adiabatic and reversible, therefore, isentropic
s1 = s2 = 6.4 kJ/(kg K)
h1 = 3500 kJ/kg
t2 = 550 C
The work in the turbine is of
w = h1 - h2 = 3500 - 2500 = 1000 kJ/kg
The thermal efficiency of the cycle depends on the input heat.
η = w/q1
q1 is not a given, so it cannot be calculated.
Explanation:
sory sorry sorry sorrysorrysorry
Answer:
Engineers can design a train with a regenerative braking system
Explanation:
Assuming the point of the question is that the engineers want to focus on using energy efficiently when starting and stopping, they would likely want to consider a regenerative braking system. Such a system can store energy during braking so that it can be used during starting, reducing the amount of energy that must be supplied by an outside power source.
Answer:
835,175.68W
Explanation:
Calculation to determine the required power input to the pump
First step is to calculate the power needed
Using this formula
P=V*p*g*h
Where,
P represent power
V represent Volume flow rate =0.3 m³/s
p represent brine density=1050 kg/m³
g represent gravity=9.81m/s²
h represent height=200m
Let plug in the formula
P=0.3 m³/s *1050 kg/m³*9.81m/s² *200m
P=618,030 W
Now let calculate the required power input to the pump
Using this formula
Required power input=P/μ
Where,
P represent power=618,030 W
μ represent pump efficiency=74%
Let plug in the formula
Required power input=618,030W/0.74
Required power input=835,175.68W
Therefore the required power input to the pump will be 835,175.68W