1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
3 years ago
9

Explain with schematics the operating principle of solid state lasers.

Engineering
1 answer:
alina1380 [7]3 years ago
7 0

Explanation:

A solid state laser contains a cavity like structure fitted with spherical mirrors or plane mirrors at the end filled with a rigidly bonded crystal. It uses solid as the medium. It uses glass or crystalline materials.

    It is known that active medium used for this type of laser is a solid material. This lasers are pumped optically by means of a light source which is used as a source of energy for the laser. The solid materials gets excited by absorbing energy in the form of light from the light source. Here the pumping source is light energy.  

You might be interested in
Consider a person standing in a breezy room at 20°C. Determine the total rate of heat transfer from the person if the exposed su
Ghella [55]

Answer:

dfggf

Explanation:

3 0
3 years ago
Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =
uranmaximum [27]

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

8 0
4 years ago
A 50 mm 45 mm 20 mm cell phone charger has a surface temperature of Ts 33 C when plugged into an electrical wall outlet but not
romanna [79]

Answer:

C = $0.0032 per day

Explanation:

We are given;

Dimension of cell phone; 50 mm × 45 mm × 20 mm

Temperature of charger; T1 = 33°C = 306K

Emissivity; ε = 0.92

convection heat transfer coefficient; h = 4.5 W/m².K

Room air temperature; T∞ = 22°C = 295K

Wall temperature; T2 = 20°C = 293 K

Cost of electricity; C = $0.18/kW.h

Chargers are usually in the form of a cuboid, and thus, surface Area is;

A = (50 × 45) + 2(50 × 20) + 2(45 × 20)

A = 6050 mm²

A = 6.05 × 10^(-3) m²

Formula for total heat transfer rate is;

E_t = hA(T1 - T∞) + εσA((T1)⁴ - (T2)⁴)

Where σ is Stefan Boltzmann constant with a value of; σ = 5.67 × 10^(-8) W/m².K⁴

Thus;

E_t = 4.5 × 6.05 × 10^(-3) (306 - 295) + (0.92 × 6.05 × 10^(-3) × 5.67 × 10^(-8)(306^(4) - 293^(4)))

E_t = 0.7406 W = 0.7406 × 10^(-3) KW

Now, we know C = $0.18/kW.h

Thus daily cost which has 24 hours gives;

C = 0.18 × 0.7406 × 10^(-3) × 24

C = $0.0032 per day

6 0
3 years ago
Kkhghghglgghklghghghlk
RideAnS [48]

Answer:

hLDskjdbKSABCLABJC

Explanation:

BECAUSE

3 0
4 years ago
Read 2 more answers
The files provided in the code editor to the right contain syntax and/or logic errors. In each case, determine and fix the probl
Yanka [14]

Question Continuation

public class DebugOne3{

public static void main(String args){

System.out.print1n("Over the river");

System.out.pr1ntln("and through the woods");

system.out.println("to Grandmother's house we go");

}

}

Answer:

Line 2: Invalid Syntax for the main method. The main method takes the form

public static void main (String [] args) { }

or

public static void main (String args []) { }

Line 3: The syntax to print is wrong.

To print on a new line, make use of System.out.println(".."); not System.out.print1n();

Line 4:

To print on a new line, make use of System.out.println(".."); not System.out.pr1ntln();

Line 5:

The case of "system" is wrong.

The correct case is sentence case, "System.out.println" without the quotes

The correct program goes, this:

public class DebugOne3{

public static void main(String [] args){

System.out.println("Over the river");

System.out.println("and through the woods");

System.out.println("to Grandmother's house we go");

}

}

Explanation:

3 0
3 years ago
Other questions:
  • Consider a falling mass(m) under gravity(9.8m/s). Initial velocity of the mass is 5 m/s upwards. Derive expressions for the velo
    14·1 answer
  • Is it true or false that sometimes people except certain risks in exchange for other benefits
    13·1 answer
  • Calculate the force of attraction between a Ca^2+ and an 0^2- irons whose centers are sep by a distance of 1.25 nm.
    7·1 answer
  • Given the strings s1 and s2, not necessarily of the same length, create a new string consisting of alternating characters of s1
    5·1 answer
  • Because of ____________ people must make choices, and when they choose, they incur a(n)______________.
    10·1 answer
  • A 1/4th scale car is to be tested in a wind tunnel. If the full scale speed of the car is 30m/s, what should be the wind tunnel
    9·1 answer
  • Consider the following statement, which is intended to create an ArrayList named a to store only elements of type Thing. Assume
    9·1 answer
  • Router bits with cutting lips on the ends are for
    15·1 answer
  • A coil having resistance of 7 ohms and inductance of 31.8 mh is connected to 230v,50hz supply.calculate 1. The circuit current 2
    6·1 answer
  • If you are working with an extension ladder that has 15 rungs in each of the two sliding sections, this
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!