Answer:
Part A
The bearing of the point 'R' from 'S' is 225°
Part B
The bearing from R to Q is approximately 293.2°
Step-by-step explanation:
The location of the point 'Q' = 35 km due East of P
The location of the point 'S' = 15 km due West of P
The location of the 'R' = 15 km due south of 'P'
Part A
To work out the distance from 'R' to 'S', we note that the points 'R', 'S', and 'P' form a right triangle, therefore, given that the legs RP and SP are at right angles (point 'S' is due west and point 'R' is due south), we have that the side RS is the hypotenuse side and ∠RPS = 90° and given that
=
, the right triangle ΔRPS is an isosceles right triangle
∴ ∠PRS = ∠PSR = 45°
The bearing of the point 'R' from 'S' measured from the north of 'R' = 180° + 45° = 225°
Part B
∠PRQ = arctan(35/15) ≈ 66.8°
Therefore the bearing from R to Q = 270 + 90 - 66.8 ≈ 293.2°
Answer:
-2
Step-by-step explanation:
Just use 6-8 and you will get - 2
Check again with - 2+8 you will get positive 6
Options :
A. The initial number of bacteria is 7.
B. The initial of bacteria decreases at a rate of 93% each day.
C. The number of bacteria increases at a rate of 7% each day.
D. The number of bacteria at the end of one day is 360.
Answer:
C. The number of bacteria increases at a rate of 7% each day.
Step-by-step explanation:
Given the function :
f(x)=360(1.07)^x ; Number of bacteria in sample at the end of x days :
The function above represents an exponential growth function :
With the general form ; Ab^x
Where A = initial amount ;
b = growth rate
x = time
For the function :
A = initial amount of bacteria = 360
b = growth rate = (1 + r) = 1.07
If ; (1 + r) = 1.07 ; we can solve for r to obtain the daily growth rate ;
1 + r = 1.07
r = 1.07 - 1
r = 0.07
r as a percentage ;
0.07 * 100% = 7%
Answer:
eeee
Step-by-step explanation:
eeeee
Answer:
Yeehaw
Step-by-step explanation: