A student can take three subjects in 40 ways.
<u>SOLUTION:</u>
Given that, there are 4 different math courses, 5 different science courses, and 2 different history courses.
A student must take one of each, how many different ways can this be done?
Now, number ways to take math course = 4
Number of ways to take science course = 5
Number of ways to take history course = 2
So, now, total possible ways = product of possible ways for each course = 4 x 5 x 2 = 40 ways.
Hence, a student can take three subjects in 40 ways.
Data:
Apples = 28
Oranges = 20
Pears = 12
<span>What is the ratio of apples to the total pieces of fruit?
Solving:
</span>

<span>
</span>
<em>1) 5 c + 4 = - 26
5 c = -26 -4
5 c = -30
c = -30 / 5
c = -6 so correct option is B..
2) 3 x - x +2 = 12
2 x +2 = 12
2x = 12-2
2x = 10
x = 10/2
x= 5 so correct option is D
3 ) 3 ( x + 1 )+ 6 = 33
3x + 3 + 6 = 33
3x + 9 = 33
3x = 33-9
3x = 24
x = 24/3
x = 8 so correct option is B
4) y/-6=9
y=9 x -6
y= - 54 there is no such option i guess question is missing
5)(x + 4) /2 = 7
x +4 = 7 x 2
x + 4 = 14
x = 14-4
x = 10 so correct option is D
6)1/3 ( 2x - 8) = 4
2x/ 3 - 8 /3 = 4
2x - 8 / 3 = 4
2x - 8 = 4 x 3
2x - 8 = 12
2x = 12 + 8
2x = 20
x = 20/2
x = 10 so correct option is C
</em>
For this case we have the following functions:

We must find
. By definition we have to:

So:

Finally, the composite function is:

Answer:

Answer: The first equation is an equation of a parabola. The second equation is an equation of a line.
Explanation:
The first equation is,

In this equation the degree of y is 1 and the degree of x is 2. The degree of both variables are not same. Since the coefficients of y and higher degree of x is positive, therefore it is a graph of an upward parabola.
The second equation is,

In this equation the degree of x is 1 and the degree of y is 1. The degree of both variables are same. Since both variables have same degree which is 1, therefore it is linear equation and it forms a line.
Therefore, the first equation is an equation of a parabola. The second equation is an equation of a line.