Answer:
Part a) When collision is perfectly inelastic

Part b) When collision is perfectly elastic

Explanation:
Part a)
As we know that collision is perfectly inelastic
so here we will have

so we have

now we know that in order to complete the circle we will have


now we have

Part b)
Now we know that collision is perfectly elastic
so we will have

now we have


Answer:
-352.275KJ
Explanation:
We are given that
Mass of car=1500kg
Initial speed of car =u=96 km/h=
1km/h=
Final speed of car=v=56km/h=
Distance traveled by car=s=55m
We have to find the work done by the car's braking system.
Using third equation of motion




Where negative sign indicates that velocity of car decreases.
Work done by a car's barking system=
Work done by a car's barking system=
Work done by a car's barking system=
1KJ=1000J
Where negative sign indicates that work done in opposite direction of motion.
Answer:
14.2
Explanation:
find horizontal force of the weight = 2.5kg x 9.8 Sin30 = 12.3 N
to prevent the sliding she needs to pull horizontally
Fh = 12.3 /Cos 30 =14.2N
Answer: I don’t think so, because the box is ALREADY against the wall so you can’t move it further into the wall
Explanation: