With arms outstretched,
Moment of inertia is I = 5.0 kg-m².
Rotational speed is ω = (3 rev/s)*(2π rad/rev) = 6π rad/s
The torque required is
T = Iω = (5.0 kg-m²)*(6π rad/s) = 30π
Assume that the same torque drives the rotational motion at a moment of inertia of 2.0 kg-m².
If u = new rotational speed (rad/s), then
T = 2u = 30π
u = 15π rad/s
= (15π rad/s)*(1 rev/2π rad)
= 7.5 rev/s
Answer: 7.5 revolutions per second.
Answer:
the velocity is 10 m/s
Explanation:
Using the expression for kinetic energy we have:
![Ek=\frac{1}{2} *m*v^{2} \\\\Ek=100J\\m=2kg\\v=\sqrt{(2*100/2)}\\ v=10[m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5C%5C%5CEk%3D100J%5C%5Cm%3D2kg%5C%5Cv%3D%5Csqrt%7B%282%2A100%2F2%29%7D%5C%5C%20v%3D10%5Bm%2Fs%5D)
Newton's first law is sometimes known as the law of inertia. It is the law that states that an object at rest will stay at rest and an object in motion will stay in motion unless a force acts upon it. For example, if I was working with a wrench in space an it slipped, it would keep on going in one direction with a constant speed unless it hits something. Hope this helps!
The Beams And Joints That Hold It .
The ratio of the turns to the voltage should be equal
i.e: 200/120 = t/12
so the secondary coil should have 20 turns