Answer:
The total distance, side to side, that the top of the building moves during such an oscillation = 31 cm
Explanation:
Let the total side to side motion be 2A. Where A is maximum acceleration.
Now, we know know that equation for maximum acceleration is;
A = α(max) / [(2πf)^(2)]
So 2A = 2[α(max) / [(2πf)^(2)] ]
α(max) = (0.025 x 9.81) while frequency(f) from the question is 0.2Hz.
Therefore 2A = 2 [(0.025 x 9.81) / [((2π(0.2)) ^(2)] ] = 2( 0.245 / 1.58) = 0.31m or 31cm
Answer:
A rotation occurs after every side out, which is when the receiving team gains the right to serve by winning a rally. ... The new serving team will rotate clockwise one spot. The purpose of this is to rotate all the players through the serving position. If you continue winning points, you stay in position.
Well, the tension in the thread will probably quadruple, but the hanging body will continue to just hang there.
The question gives us no evidence that it is doing any oscillating, and there's no reason for it to start just because it suddenly got heavier.
Answer:
An object can have a displacement in the absence of any external force acting on it
Explanation:
When a object moves with a constant velocity (v), then it gets displaced in the direction of motion but the net external force experienced by the object is zero.
F external =ma
If object moves with constant velocity, acceleration is zero.
Since, a=0 ⟹F external =0
Using s=ut+ 1/2 at ^2
⟹ Displacement s=ut (∵a=0)
Hence, an object can have a displacement in the absence of any external force acting on it
Hope this helped you:)
If it's a distance graph, then it's a constant speed.