1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
3 years ago
11

An object is 39 cm away from a concave mirrors surface along the principles axis. If the mirrors focal length is 9.50 cm, how fa

r away is the corresponding image?
Physics
1 answer:
Tatiana [17]3 years ago
5 0

Answer:

12.6 cm

Explanation:

We can use the mirror equation to find the distance of the image from the mirror:

\frac{1}{f}=\frac{1}{p}+\frac{1}{q}

where here we have

f = 9.50 cm is the focal length

p = 39 cm is the distance of the object from the mirror

Solving the equation for q, we find:

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{9.50 cm}-\frac{1}{39 cm}=0.080 cm^{-1}\\q = \frac{1}{0.080 cm}=12.6 cm

You might be interested in
For thermal equilibrium at temperature Tan appropriate measure of energy is kT where k is Boltzmann's constant. Convert the foll
Schach [20]

Answer:

1 cm⁻¹ =1.44K  1 ev = 1.16 10⁴ K

Explanation:

The relationship between temperature and thermal energy is

     E = K T

The relationship of the speed of light

    c =λ f = f / ν          1/λ= ν

The Planck equation is

          E = h f

Let's start the transformations

     c = f λ = f / ν        

     f = c ν

     E = h f

     E = h c ν

     E = KT

     h c ν = K T

     T = h c ν  / K =( h c / K) ν

Let's replace the constants

     h = 6.63 10⁻³⁴ J s

     c = 3 10⁸ m / s

     K = 1.38  10⁻²³ J / K

 

     v = 1 cm-1 (100 cm / 1 m) = 10² m-1

   

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²

     A = h c / K = 1,441 10⁻²

     T =  1.44K

     ν = 103 cm⁻¹ = 103 10² m

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²

     T = 148K

1 Rydberg = 1.097 10 7 m

As we saw at the beginning the λ=1 / v

     T = (h c / K) 1 /λ

     T = 1,441 10⁻²  1 / 1,097 10⁷

     T = 1.3 10⁻⁹ K

    E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J

    E = KT

    T = E/K

    T = 1.6 10⁻¹⁹ /1.38 10⁻²³

    T = 1.16 10⁴ K

3 0
3 years ago
The suspension cable of a 1,000 kg elevator snaps, sending the elevator moving downward through its shaft. The emergency brakes
tester [92]

Answer:

option (E) 1,000,000 J

Explanation:

Given:

Mass of the suspension cable, m = 1,000 kg

Distance, h = 100 m

Now,

from the work energy theorem

Work done by the gravity = Work done by brake

or

mgh = Work done by brake

where, g is the acceleration due to the gravity = 10 m/s²

or

Work done by brake  = 1000 × 10 × 100

or

Work done by brake = 1,000,000 J

this work done is the release of heat in the brakes

Hence, the correct answer is option (E) 1,000,000 J

4 0
3 years ago
A box of mass 26 kg is initially at rest on a flat floor. The coefficient of kinetic friction between the box and the floor is 0
Kazeer [188]

Answer:

\Delta K = 52J

Explanation:

The change in kinetic energy will be simply the difference between the final and initial kinetic energies: \Delta K=K_f-K_i

We know that the formula for the kinetic energy for an object is:

K=\frac{mv^2}{2}

where <em>m </em>is the mass of the object and <em>v</em> its velocity.

For our case then we have:

\Delta K = K_f-K_i=\frac{mv_f^2}{2}-\frac{mv_i^2}{2}=\frac{m(v_f^2-v_i^2)}{2}

Which for our values is:

\Delta K = \frac{m(v_f^2-v_i^2)}{2} = \frac{(26Kg)((2m/s)^2-(0m/s)^2)}{2} = 52J

3 0
3 years ago
In a wheel and axle, the radius of the wheel is 20 cm and the radius of the axle is 4 cm. What is the mechanical advantage?
aliya0001 [1]
The answer is 5. To find the advantage you just divide 20 by 4.
4 0
3 years ago
Read 2 more answers
A resistor is connected in series with an AC source that provides a sinusoidal voltage of v of t is equal to V times cosine of b
nekit [7.7K]
<h2>Answer:</h2>

In circuits, the average power is defined as the average of the instantaneous power  over one period. The instantaneous power can be found as:

p(t)=v(t)i(t)

So the average power is:

P=\frac{1}{T}\intop_{0}^{T}p(t)dt

But:

v(t)=v_{m}cos(\omega t) \\ \\ i(t)=i_{m}cos(\omega t)

So:

P=\frac{1}{T}\intop_{0}^{T}v_{m}cos(\omega t)i_{m}cos(\omega t)dt \\ \\ P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}cos^{2}(\omega t)dt \\ \\ But: cos^{2}(\omega t)=\frac{1+cos(2\omega t)}{2}

P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}(\frac{1+cos(2\omega t)}{2} )dt \\\\P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}[\frac{1}{2}+\frac{cos(2\omega t)}{2}]dt \\\\P=\frac{v_{m}i_{m}}{T}[\frac{1}{2}(t)\right|_0^T +\frac{sin(2\omega t)}{4\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2T}[(t)\right|_0^T +\frac{sin(2\omega t)}{2\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2}

In terms of RMS values:

V_{RMS}=V=\frac{v_{m}}{\sqrt{2}} \\ \\ I_{RMS}=I=\frac{i_{m}}{\sqrt{2}} \\ \\ Then: \\ \\ P=VI

7 0
3 years ago
Other questions:
  • Neutron stars are smaller in size than less massive white dwarfs. <br> a. True <br> b. False
    10·1 answer
  • How far will a football travel if it is booted at a speed of 15 m/s and travels for 3 seconds?
    12·1 answer
  • A circular wire loop of radius 15.0 cm carries a current of 2.60
    5·1 answer
  • By how much does the earth-Sun distance change? 300,000 miles 500,000 miles 3,000,000 miles 3,500 miles
    12·1 answer
  • please help! find magnitude and direction (the counterclockwise angle with the +x axis) of a vector that is equal to a + c
    14·1 answer
  • The Sl temperature scale used in science is the
    6·2 answers
  • Consider a small raindrop and a large raindrop falling through the atmosphere. (a) Compare their terminal speeds. Both raindrops
    8·1 answer
  • At an instant when a soccer ball is in contact with the foot of the player kicking it, the horizontal or x component of the ball
    14·1 answer
  • The flagpole is held vertical by two ropes. The first of these ropes has a tension in it of 100 N and is at an angle of 60° to t
    9·1 answer
  • A sound wave has a wavelength of 15 meters with a frequency of 2.5 Hz. What would the velocity be for this situation in
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!