Answer:
v = 10.84 m/s
Explanation:
using the equation of motion:
v^2 = (v0)^2 + 2×a(r - r0)
<em>due to the hammer starting from rest, vo = 0 m/s and a = g , g is the gravitational acceleration.</em>
v^2 = 2×g(r - r0)
v = \sqrt{2×(-9.8)×(4 - 10)}
= 10.84 m/s
therefore, the velocity at r = 4 meters is 10.84 m/s
Answer:
m = 3 kg
The mass m is 3 kg
Explanation:
From the equations of motion;
s = 0.5(u+v)t
Making t thr subject of formula;
t = 2s/(u+v)
t = time taken
s = distance travelled during deceleration = 62.5 m
u = initial speed = 25 m/s
v = final velocity = 0
Substituting the given values;
t = (2×62.5)/(25+0)
t = 5
Since, t = 5 the acceleration during this period is;
acceleration a = ∆v/t = (v-u)/t
a = (25)/5
a = 5 m/s^2
Force F = mass × acceleration
F = ma
Making m the subject of formula;
m = F/a
net force F = 15.0N
Substituting the values
m = 15/5
m = 3 kg
The mass m is 3 kg
A. True. You can use displacement to determine the volume of solids and liquids.
I'd answer that but I can't text graphs and tables...
The answer for the given question above would be the third option. Carbon dioxide absorbs the most heat energy during SUBLIMATION. By definition, sublimation is <span>the transition of a substance from the solid to the gas phase without passing through the intermediate liquid phase. Hope this answers your question.</span>