<span>By algebra, d = [(v_f^2) - (v_i^2)]/2a.
Thus, d = [(0^2)-(15^2)]/(2*-7)
d = [0-(225)]/(-14)
d = 225/14
d = 16.0714 m
With 2 significant figures in the problem, the car travels 16 meters during deceleration.</span>
Answer:
3.75 m/s south
Explanation:
Momentum before collision = momentum after collision
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
Since the car and truck stick together, v₁ = v₂.
m₁ u₁ + m₂ u₂ = (m₁ + m₂) v
Given m₁ = 1500 kg, u₁ = -15 m/s, m₂ = 4500 kg, and u₂ = 0 m/s:
(1500 kg) (-15 m/s) + (4500 kg) (0 m/s) = (1500 kg + 4500 kg) v
-22500 kg m/s = 6000 kg v
v = -3.75 m/s
The final velocity is 3.75 m/s to the south.
False, as an object falls its potential energy turns into kinetic energy thus decreasing the potential energy.
-- pushing on a brick wall
-- standing on your little brother's back so that he can't get up
-- taking a nap while on the job
-- squeezing anything that doesn't yield to your squeeze, such as a glass bottle or your girl friend
-- watching TV
-- solving math problems in your head
-- making pictures out of clouds in the sky
Answer:
The net Electric field at the mid point is 289.19 N/C
Given:
Q = + 71 nC = 
Q' = + 42 nC = 
Separation distance, d = 1.9 m
Solution:
To find the magnitude of electric field at the mid point,
Electric field at the mid-point due to charge Q is given by:



Now,
Electric field at the mid-point due to charge Q' is given by:



Now,
The net Electric field is given by:

