Answer: v = 4.4 m/s
Explanation:
In the absence of friction, the total mechanical energy will be constant
KE₀ + PE₀ = KE₁ + PE₁
0 + mg(6) = ½mv₁² + mg(5)
½mv₁² = mg(6 - 5)
v = √(2g(1)) = 4.4 m/s
To solve the exercise it is necessary to take into account the concepts of wavelength as a function of speed.
From the definition we know that the wavelength is described under the equation,

Where,
c = Speed of light (vacuum)
f = frequency
Our values are,


Replacing we have,



<em>Therefore the wavelength of this wave is
</em>
Solar energy - A
nuclear energy - B
fossil fuel energy - C
wind energy - D
geothermal energy - E
Answer:
g = 0.85 m
Explanation:
g = 
were; g is the acceleration due to Earth's gravity, G is Newton's gravitation constant (6.674 x
N
), M is the mass of the earth (5.972 x
kg), and h is the distance of meteoroid to the earth.
h = 3.40 x R
= 3.40 x 6371 km
h = 21661.4 km
= 21661400 m
Thus,
g = 
= 
= 0.84944
g = 0.85 m
The acceleration due to the Earth's gravitation is 0.85 m
.