Answer:
Question 2 is the right answer.
Step-by-step explanation:
Answer:
15m2 is the answer my friend.....
Answer:
The sample size to obtain the desired margin of error is 160.
Step-by-step explanation:
The Margin of Error is given as

Rearranging this equation in terms of n gives
![n=\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2](https://tex.z-dn.net/?f=n%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2)
Now the Margin of Error is reduced by 2 so the new M_2 is given as M/2 so the value of n_2 is calculated as
![n_2=\left[z_{crit}\times \dfrac{\sigma}{M_2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{\sigma}{M/2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{2\sigma}{M}\right]^2\\n_2=2^2\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4n](https://tex.z-dn.net/?f=n_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM_2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%2F2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B2%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D2%5E2%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4n)
As n is given as 40 so the new sample size is given as

So the sample size to obtain the desired margin of error is 160.
Answer:
The 90% confidence interval for the mean time required by all college graduates is between 5.36 years and 5.44 years.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:
Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so
Now, find the margin of error M as such
In which
is the standard deviation of the population and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 5.4 - 0.04 = 5.36 years.
The upper end of the interval is the sample mean added to M. So it is 5.4 + 0.04 = 5.44 years.
The 90% confidence interval for the mean time required by all college graduates is between 5.36 years and 5.44 years.
For discontinuity of the function:
x² - 7 x - 8 ≠ 0
x² - 8 x + x - 8 = 0
x ( x - 8 ) + ( x - 8 ) ≠ 0
( x - 8 ) ( x + 1 ) ≠ 0
The points of discontinuity are: x = - 1 and x = 8.
As for the Domain of the function:
x ∈ ( - ∞, - 1 ) ∪ ( - 1 , 8 ) ∪ ( 8, +∞ ).