Answer:

Step-by-step explanation:

![x^2+3x=10^{1\frac{1}{2}}\\\\x^2+3x=10^{1+\frac{1}{2}}\qquad\text{use}\ a^n\cdot a^m=a^{n+m}\\\\x^2+3x=10\cdot10^\frac{1}{2}\qquad\text{use}\ \sqrt[n]{a}=a^\frac{1}{n}\\\\x^2+3x=10\sqrt{10}\qquad\text{subtract}\ 10\sqrt{10}\ \text{from both sides}\\\\x^2+3x-10\sqrt{10}=0\\\\\text{Use the quadratic formula}\\\\ax^2+bx+c=0\\\\x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\a=1,\ b=3,\ c=-10\sqrt{10}\\\\b^2-4ac=3^2-4(1)(-10\sqrt{10})=9+40\sqrt{10}\\\\x=\dfrac{-3\pm\sqrt{40+10\sqrt{10}}}{2(1)}=\dfrac{-3\pm\sqrt{40+10\sqrt{10}}}{2}\\\\x=\dfrac{-3-\sqrt{10+10\sqrt{10}}}{2}\notin D](https://tex.z-dn.net/?f=x%5E2%2B3x%3D10%5E%7B1%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5Cx%5E2%2B3x%3D10%5E%7B1%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cqquad%5Ctext%7Buse%7D%5C%20a%5En%5Ccdot%20a%5Em%3Da%5E%7Bn%2Bm%7D%5C%5C%5C%5Cx%5E2%2B3x%3D10%5Ccdot10%5E%5Cfrac%7B1%7D%7B2%7D%5Cqquad%5Ctext%7Buse%7D%5C%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%5Cfrac%7B1%7D%7Bn%7D%5C%5C%5C%5Cx%5E2%2B3x%3D10%5Csqrt%7B10%7D%5Cqquad%5Ctext%7Bsubtract%7D%5C%2010%5Csqrt%7B10%7D%5C%20%5Ctext%7Bfrom%20both%20sides%7D%5C%5C%5C%5Cx%5E2%2B3x-10%5Csqrt%7B10%7D%3D0%5C%5C%5C%5C%5Ctext%7BUse%20the%20quadratic%20formula%7D%5C%5C%5C%5Cax%5E2%2Bbx%2Bc%3D0%5C%5C%5C%5Cx%3D%5Cdfrac%7B-b%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%5C%5C%5C%5Ca%3D1%2C%5C%20b%3D3%2C%5C%20c%3D-10%5Csqrt%7B10%7D%5C%5C%5C%5Cb%5E2-4ac%3D3%5E2-4%281%29%28-10%5Csqrt%7B10%7D%29%3D9%2B40%5Csqrt%7B10%7D%5C%5C%5C%5Cx%3D%5Cdfrac%7B-3%5Cpm%5Csqrt%7B40%2B10%5Csqrt%7B10%7D%7D%7D%7B2%281%29%7D%3D%5Cdfrac%7B-3%5Cpm%5Csqrt%7B40%2B10%5Csqrt%7B10%7D%7D%7D%7B2%7D%5C%5C%5C%5Cx%3D%5Cdfrac%7B-3-%5Csqrt%7B10%2B10%5Csqrt%7B10%7D%7D%7D%7B2%7D%5Cnotin%20D)
Answer:
3
Step-by-step explanation:
3 is a prime number so other than 3x1 3 does not have any other factors
The answer is 40 you do 10 times 4 I hope it helped you you only need to multiply
The answer would be 15 but i am not sure what the problem says her answer is. if it is not 15 then her answer is wrong
An outlier<span> is an observation that lies an abnormal distance from other values in a random sample from a population. In a sense, this definition leaves it up to the analyst (or a consensus process) to decide what will be considered abnormal. Before abnormal observations can be singled out, it is necessary to characterize normal observations.
Basically the ones that are far away from the others.
Thus, the outliers for this graph are K and F
</span>